May  2021, 14(5): 1747-1756. doi: 10.3934/dcdss.2020452

On a class of semipositone problems with singular Trudinger-Moser nonlinearities

Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA

* Corresponding author: Kanishka Perera

Received  December 2019 Revised  April 2020 Published  November 2020

We prove the existence of positive solutions for a class of semipositone problems with singular Trudinger-Moser nonlinearities. The proof is based on compactness and regularity arguments.

Citation: Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1747-1756. doi: 10.3934/dcdss.2020452
References:
[1]

Ad imurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.  doi: 10.1007/s00030-006-4025-9.  Google Scholar

[2]

I. AliA. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117 (1993), 775-782.  doi: 10.1090/S0002-9939-1993-1116249-5.  Google Scholar

[3]

A. AmbrosettiD. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations, 7 (1994), 655-663.   Google Scholar

[4]

A. CastroD. G. de Figueredo and E. Lopera, Existence of positive solutions for a semipositone $p$-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 475-482.  doi: 10.1017/S0308210515000657.  Google Scholar

[5]

A. Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 291-302.  doi: 10.1017/S0308210500014670.  Google Scholar

[6]

M. ChhetriP. Drábek and R. Shivaji, Existence of positive solutions for a class of $p$-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 925-936.  doi: 10.1017/S0308210515000220.  Google Scholar

[7]

D. G. CostaH. Ramos Quoirin and H. Tehrani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc., 145 (2017), 2661-2675.  doi: 10.1090/proc/13426.  Google Scholar

show all references

References:
[1]

Ad imurthi and K. Sandeep, A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.  doi: 10.1007/s00030-006-4025-9.  Google Scholar

[2]

I. AliA. Castro and R. Shivaji, Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117 (1993), 775-782.  doi: 10.1090/S0002-9939-1993-1116249-5.  Google Scholar

[3]

A. AmbrosettiD. Arcoya and B. Buffoni, Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations, 7 (1994), 655-663.   Google Scholar

[4]

A. CastroD. G. de Figueredo and E. Lopera, Existence of positive solutions for a semipositone $p$-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 475-482.  doi: 10.1017/S0308210515000657.  Google Scholar

[5]

A. Castro and R. Shivaji, Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 291-302.  doi: 10.1017/S0308210500014670.  Google Scholar

[6]

M. ChhetriP. Drábek and R. Shivaji, Existence of positive solutions for a class of $p$-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 925-936.  doi: 10.1017/S0308210515000220.  Google Scholar

[7]

D. G. CostaH. Ramos Quoirin and H. Tehrani, A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc., 145 (2017), 2661-2675.  doi: 10.1090/proc/13426.  Google Scholar

[1]

A. Aghajani, S. F. Mottaghi. Regularity of extremal solutions of semilinaer fourth-order elliptic problems with general nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 887-898. doi: 10.3934/cpaa.2018044

[2]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[3]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[4]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[5]

Prasanta Kumar Barik, Ankik Kumar Giri, Rajesh Kumar. Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021009

[6]

Jianping Gao, Shangjiang Guo, Wenxian Shen. Persistence and time periodic positive solutions of doubly nonlocal Fisher-KPP equations in time periodic and space heterogeneous media. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2645-2676. doi: 10.3934/dcdsb.2020199

[7]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[8]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[9]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[10]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[11]

Horst R. Thieme. Remarks on resolvent positive operators and their perturbation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 73-90. doi: 10.3934/dcds.1998.4.73

[12]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[13]

Marco Cirant, Diogo A. Gomes, Edgard A. Pimentel, Héctor Sánchez-Morgado. On some singular mean-field games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021006

[14]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[15]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[16]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[17]

Giovanni Cimatti. Forced periodic solutions for piezoelectric crystals. Communications on Pure & Applied Analysis, 2005, 4 (2) : 475-485. doi: 10.3934/cpaa.2005.4.475

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Hirofumi Notsu, Masato Kimura. Symmetry and positive definiteness of the tensor-valued spring constant derived from P1-FEM for the equations of linear elasticity. Networks & Heterogeneous Media, 2014, 9 (4) : 617-634. doi: 10.3934/nhm.2014.9.617

[20]

M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (32)
  • HTML views (131)
  • Cited by (0)

Other articles
by authors

[Back to Top]