-
Previous Article
Compactness results for linearly perturbed Yamabe problem on manifolds with boundary
- DCDS-S Home
- This Issue
-
Next Article
Causal fermion systems and the ETH approach to quantum theory
On a class of semipositone problems with singular Trudinger-Moser nonlinearities
Department of Mathematical Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA |
We prove the existence of positive solutions for a class of semipositone problems with singular Trudinger-Moser nonlinearities. The proof is based on compactness and regularity arguments.
References:
[1] |
Ad imurthi and K. Sandeep,
A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.
doi: 10.1007/s00030-006-4025-9. |
[2] |
I. Ali, A. Castro and R. Shivaji,
Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117 (1993), 775-782.
doi: 10.1090/S0002-9939-1993-1116249-5. |
[3] |
A. Ambrosetti, D. Arcoya and B. Buffoni,
Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations, 7 (1994), 655-663.
|
[4] |
A. Castro, D. G. de Figueredo and E. Lopera,
Existence of positive solutions for a semipositone $p$-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 475-482.
doi: 10.1017/S0308210515000657. |
[5] |
A. Castro and R. Shivaji,
Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 291-302.
doi: 10.1017/S0308210500014670. |
[6] |
M. Chhetri, P. Drábek and R. Shivaji,
Existence of positive solutions for a class of $p$-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 925-936.
doi: 10.1017/S0308210515000220. |
[7] |
D. G. Costa, H. Ramos Quoirin and H. Tehrani,
A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc., 145 (2017), 2661-2675.
doi: 10.1090/proc/13426. |
show all references
References:
[1] |
Ad imurthi and K. Sandeep,
A singular Moser-Trudinger embedding and its applications, NoDEA Nonlinear Differential Equations Appl., 13 (2007), 585-603.
doi: 10.1007/s00030-006-4025-9. |
[2] |
I. Ali, A. Castro and R. Shivaji,
Uniqueness and stability of nonnegative solutions for semipositone problems in a ball, Proc. Amer. Math. Soc., 117 (1993), 775-782.
doi: 10.1090/S0002-9939-1993-1116249-5. |
[3] |
A. Ambrosetti, D. Arcoya and B. Buffoni,
Positive solutions for some semi-positone problems via bifurcation theory, Differential Integral Equations, 7 (1994), 655-663.
|
[4] |
A. Castro, D. G. de Figueredo and E. Lopera,
Existence of positive solutions for a semipositone $p$-Laplacian problem, Proc. Roy. Soc. Edinburgh Sect. A, 146 (2016), 475-482.
doi: 10.1017/S0308210515000657. |
[5] |
A. Castro and R. Shivaji,
Nonnegative solutions for a class of nonpositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 108 (1988), 291-302.
doi: 10.1017/S0308210500014670. |
[6] |
M. Chhetri, P. Drábek and R. Shivaji,
Existence of positive solutions for a class of $p$-Laplacian superlinear semipositone problems, Proc. Roy. Soc. Edinburgh Sect. A, 145 (2015), 925-936.
doi: 10.1017/S0308210515000220. |
[7] |
D. G. Costa, H. Ramos Quoirin and H. Tehrani,
A variational approach to superlinear semipositone elliptic problems, Proc. Amer. Math. Soc., 145 (2017), 2661-2675.
doi: 10.1090/proc/13426. |
[1] |
Xiaobao Zhu. Remarks on singular trudinger-moser type inequalities. Communications on Pure and Applied Analysis, 2020, 19 (1) : 103-112. doi: 10.3934/cpaa.2020006 |
[2] |
Djairo G. De Figueiredo, João Marcos do Ó, Bernhard Ruf. Elliptic equations and systems with critical Trudinger-Moser nonlinearities. Discrete and Continuous Dynamical Systems, 2011, 30 (2) : 455-476. doi: 10.3934/dcds.2011.30.455 |
[3] |
Shengbing Deng, Xingliang Tian. On a nonhomogeneous Kirchhoff type elliptic system with the singular Trudinger-Moser growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022071 |
[4] |
Kanishka Perera, Marco Squassina. Bifurcation results for problems with fractional Trudinger-Moser nonlinearity. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 561-576. doi: 10.3934/dcdss.2018031 |
[5] |
Sami Aouaoui, Rahma Jlel. Singular weighted sharp Trudinger-Moser inequalities defined on $ \mathbb{R}^N $ and applications to elliptic nonlinear equations. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 781-813. doi: 10.3934/dcds.2021137 |
[6] |
Kyril Tintarev. Is the Trudinger-Moser nonlinearity a true critical nonlinearity?. Conference Publications, 2011, 2011 (Special) : 1378-1384. doi: 10.3934/proc.2011.2011.1378 |
[7] |
Yamin Wang. On nonexistence of extremals for the Trudinger-Moser functionals involving $ L^p $ norms. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4257-4268. doi: 10.3934/cpaa.2020191 |
[8] |
Tomasz Cieślak. Trudinger-Moser type inequality for radially symmetric functions in a ring and applications to Keller-Segel in a ring. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2505-2512. doi: 10.3934/dcdsb.2013.18.2505 |
[9] |
Anouar Bahrouni. Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity. Communications on Pure and Applied Analysis, 2017, 16 (1) : 243-252. doi: 10.3934/cpaa.2017011 |
[10] |
Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1721-1735. doi: 10.3934/cpaa.2021038 |
[11] |
Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121 |
[12] |
Eun Kyoung Lee, R. Shivaji, Inbo Sim, Byungjae Son. Analysis of positive solutions for a class of semipositone p-Laplacian problems with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2019, 18 (3) : 1139-1154. doi: 10.3934/cpaa.2019055 |
[13] |
Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 |
[14] |
Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003 |
[15] |
Maya Chhetri, D. D. Hai, R. Shivaji. On positive solutions for classes of p-Laplacian semipositone systems. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 1063-1071. doi: 10.3934/dcds.2003.9.1063 |
[16] |
Junping Shi, Ratnasingham Shivaji. Exact multiplicity of solutions for classes of semipositone problems with concave-convex nonlinearity. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 559-571. doi: 10.3934/dcds.2001.7.559 |
[17] |
M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure and Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411 |
[18] |
Nguyen Lam. Equivalence of sharp Trudinger-Moser-Adams Inequalities. Communications on Pure and Applied Analysis, 2017, 16 (3) : 973-998. doi: 10.3934/cpaa.2017047 |
[19] |
Jia-Feng Liao, Yang Pu, Xiao-Feng Ke, Chun-Lei Tang. Multiple positive solutions for Kirchhoff type problems involving concave-convex nonlinearities. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2157-2175. doi: 10.3934/cpaa.2017107 |
[20] |
Isabel Flores, Matteo Franca, Leonelo Iturriaga. Positive radial solutions involving nonlinearities with zeros. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2555-2579. doi: 10.3934/dcds.2019107 |
2021 Impact Factor: 1.865
Tools
Metrics
Other articles
by authors
[Back to Top]