-
Previous Article
Sign-changing solutions for a parameter-dependent quasilinear equation
- DCDS-S Home
- This Issue
-
Next Article
On a class of semipositone problems with singular Trudinger-Moser nonlinearities
Compactness results for linearly perturbed Yamabe problem on manifolds with boundary
Department of Mathematics, University of Pisa, Largo B. Pontecorvo 5, 56126 Pisa, Italy |
Let $ (M,g) $ a compact Riemannian $ n $-dimensional manifold. It is well know that, under certain hypothesis, in the conformal class of $ g $ there are scalar-flat metrics that have $ \partial M $ as a constant mean curvature hypersurface. Also, under certain hypothesis, it is known that these metrics are a compact set. In this paper we prove that, both in the case of umbilic and non-umbilic boundary, if we linearly perturb the mean curvature term $ h_{g} $ with a negative smooth function $ \alpha, $ the set of solutions of Yamabe problem is still a compact set.
References:
[1] |
S. de M. Almaraz,
A compactness theorem for scalar-flat metrics on manifolds with boundary, Calc. Var. Partial Differential Equations, 41 (2011), 341-386.
doi: 10.1007/s00526-010-0365-8. |
[2] |
S. de M. Almaraz,
Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differential Equations, 251 (2011), 1813-1840.
doi: 10.1016/j.jde.2011.04.013. |
[3] |
S. de M. Almaraz,
An existence theorem of conformal scalar-flat metrics on manifolds with boundary, Pacific J. Math., 248 (2010), 1-22.
doi: 10.2140/pjm.2010.248.1. |
[4] |
S. Almaraz, O. S. de Queiroz and S. Wang,
A compactness theorem for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal., 277 (2019), 2092-2116.
doi: 10.1016/j.jfa.2019.01.001. |
[5] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics. Springer, Berlin, 1998.
doi: 10.1007/978-3-662-13006-3. |
[6] |
S. S. Chen, Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in higher dimensions, preprint, arXiv: 0912.1302, (2010). Google Scholar |
[7] |
O. Druet,
Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not., 2004 (2004), 1143-1191.
doi: 10.1155/S1073792804133278. |
[8] |
O. Druet and E. Hebey,
Blow-up examples for second order elliptic PDEs of critical sobolev growth, Trans. Amer. Math. Soc., 357 (2005), 1915-1929.
doi: 10.1090/S0002-9947-04-03681-5. |
[9] |
J. F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math., 136, (1992), 1–50.
doi: 10.2307/2946545. |
[10] |
V. Felli and M. Ould Ahmedou,
Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries, Math. Z., 244 (2003), 175-210.
doi: 10.1007/s00209-002-0486-7. |
[11] |
M. Ghimenti and A. M. Micheletti, Compactness for conformal scalar-flat metrics on umbilic boundary manifolds, Nonlinear Anal, 200 (2020), 30 pp
doi: 10.1016/j.na.2020.111992. |
[12] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Blow-up phenomena for linearly perturbed Yamabe problem on manifolds with umbilic boundary, J. Differential Equations, 267 (2019), 587-618.
doi: 10.1016/j.jde.2019.01.023. |
[13] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Linear perturbation of the Yamabe problem on manifolds with boundary, J. Geom. Anal., 28 (2018), 1315-1340.
doi: 10.1007/s12220-017-9864-6. |
[14] |
G. Giraud,
Sur le probléme de Dirichlet généralisé, Ann. Sci. École Norm. Sup., 46 (1929), 131-145.
|
[15] |
Z.-C. Han and Y. Li,
The Yamabe problem on manifolds with boundary: Existence and compactness results, Duke Math, J., 99 (1999), 489-542.
doi: 10.1215/S0012-7094-99-09916-7. |
[16] |
S. Kim, M. Musso and J. Wei, Compactness of scalar-flat conformal metrics on low-dimensional manifolds manifolds with constant mean curvature on boundary, preprint, arXiv: 1906.01317. Google Scholar |
[17] |
Y. Li and M. Zhu,
Yamabe type equations on three dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.
doi: 10.1142/S021919979900002X. |
[18] |
F. C. Marques,
Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ. Math. J., 54 (2005), 1599-1620.
doi: 10.1512/iumj.2005.54.2590. |
[19] |
F. C. Marques,
A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differ. Geom., 71 (2005), 315-346.
doi: 10.4310/jdg/1143651772. |
[20] |
F. C. Marques,
Compactness and non compactness for Yamabe-type problems, Progress in Nonlinear Differential Equation and their Applications, 86 (2015), 121-131.
doi: 10.1007/978-3-319-19902-3_9. |
[21] |
M. Mayer and C. B. Ndiaye,
Barycenter technique and the Riemann mapping problem of Cherrier-Escobar, J. Differential Geom., 107 (2017), 519-560.
doi: 10.4310/jdg/1508551224. |
[22] |
R. Schoen and D. Zhang,
Prescribed scalar curvature on the $n$-sphere, Calc. Var. Partial Differ. Equ., 4 (1996), 1-25.
doi: 10.1007/BF01322307. |
show all references
References:
[1] |
S. de M. Almaraz,
A compactness theorem for scalar-flat metrics on manifolds with boundary, Calc. Var. Partial Differential Equations, 41 (2011), 341-386.
doi: 10.1007/s00526-010-0365-8. |
[2] |
S. de M. Almaraz,
Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differential Equations, 251 (2011), 1813-1840.
doi: 10.1016/j.jde.2011.04.013. |
[3] |
S. de M. Almaraz,
An existence theorem of conformal scalar-flat metrics on manifolds with boundary, Pacific J. Math., 248 (2010), 1-22.
doi: 10.2140/pjm.2010.248.1. |
[4] |
S. Almaraz, O. S. de Queiroz and S. Wang,
A compactness theorem for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal., 277 (2019), 2092-2116.
doi: 10.1016/j.jfa.2019.01.001. |
[5] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics. Springer, Berlin, 1998.
doi: 10.1007/978-3-662-13006-3. |
[6] |
S. S. Chen, Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in higher dimensions, preprint, arXiv: 0912.1302, (2010). Google Scholar |
[7] |
O. Druet,
Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not., 2004 (2004), 1143-1191.
doi: 10.1155/S1073792804133278. |
[8] |
O. Druet and E. Hebey,
Blow-up examples for second order elliptic PDEs of critical sobolev growth, Trans. Amer. Math. Soc., 357 (2005), 1915-1929.
doi: 10.1090/S0002-9947-04-03681-5. |
[9] |
J. F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math., 136, (1992), 1–50.
doi: 10.2307/2946545. |
[10] |
V. Felli and M. Ould Ahmedou,
Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries, Math. Z., 244 (2003), 175-210.
doi: 10.1007/s00209-002-0486-7. |
[11] |
M. Ghimenti and A. M. Micheletti, Compactness for conformal scalar-flat metrics on umbilic boundary manifolds, Nonlinear Anal, 200 (2020), 30 pp
doi: 10.1016/j.na.2020.111992. |
[12] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Blow-up phenomena for linearly perturbed Yamabe problem on manifolds with umbilic boundary, J. Differential Equations, 267 (2019), 587-618.
doi: 10.1016/j.jde.2019.01.023. |
[13] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Linear perturbation of the Yamabe problem on manifolds with boundary, J. Geom. Anal., 28 (2018), 1315-1340.
doi: 10.1007/s12220-017-9864-6. |
[14] |
G. Giraud,
Sur le probléme de Dirichlet généralisé, Ann. Sci. École Norm. Sup., 46 (1929), 131-145.
|
[15] |
Z.-C. Han and Y. Li,
The Yamabe problem on manifolds with boundary: Existence and compactness results, Duke Math, J., 99 (1999), 489-542.
doi: 10.1215/S0012-7094-99-09916-7. |
[16] |
S. Kim, M. Musso and J. Wei, Compactness of scalar-flat conformal metrics on low-dimensional manifolds manifolds with constant mean curvature on boundary, preprint, arXiv: 1906.01317. Google Scholar |
[17] |
Y. Li and M. Zhu,
Yamabe type equations on three dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.
doi: 10.1142/S021919979900002X. |
[18] |
F. C. Marques,
Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ. Math. J., 54 (2005), 1599-1620.
doi: 10.1512/iumj.2005.54.2590. |
[19] |
F. C. Marques,
A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differ. Geom., 71 (2005), 315-346.
doi: 10.4310/jdg/1143651772. |
[20] |
F. C. Marques,
Compactness and non compactness for Yamabe-type problems, Progress in Nonlinear Differential Equation and their Applications, 86 (2015), 121-131.
doi: 10.1007/978-3-319-19902-3_9. |
[21] |
M. Mayer and C. B. Ndiaye,
Barycenter technique and the Riemann mapping problem of Cherrier-Escobar, J. Differential Geom., 107 (2017), 519-560.
doi: 10.4310/jdg/1508551224. |
[22] |
R. Schoen and D. Zhang,
Prescribed scalar curvature on the $n$-sphere, Calc. Var. Partial Differ. Equ., 4 (1996), 1-25.
doi: 10.1007/BF01322307. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209 |
[3] |
M. Mahalingam, Parag Ravindran, U. Saravanan, K. R. Rajagopal. Two boundary value problems involving an inhomogeneous viscoelastic solid. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1351-1373. doi: 10.3934/dcdss.2017072 |
[4] |
Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20. |
[5] |
Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533 |
[6] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[7] |
Mats Gyllenberg, Jifa Jiang, Lei Niu, Ping Yan. On the classification of generalized competitive Atkinson-Allen models via the dynamics on the boundary of the carrying simplex. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 615-650. doi: 10.3934/dcds.2018027 |
[8] |
Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137 |
[9] |
Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045 |
[10] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems - A, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[11] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
[12] |
Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021 |
[13] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[14] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[15] |
Hildeberto E. Cabral, Zhihong Xia. Subharmonic solutions in the restricted three-body problem. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 463-474. doi: 10.3934/dcds.1995.1.463 |
[16] |
Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087 |
[17] |
Pascal Noble, Sebastien Travadel. Non-persistence of roll-waves under viscous perturbations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (1) : 61-70. doi: 10.3934/dcdsb.2001.1.61 |
[18] |
Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1673-1692. doi: 10.3934/dcdss.2020449 |
[19] |
Liqin Qian, Xiwang Cao. Character sums over a non-chain ring and their applications. Advances in Mathematics of Communications, 2021 doi: 10.3934/amc.2020134 |
[20] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]