-
Previous Article
Sign-changing solutions for a parameter-dependent quasilinear equation
- DCDS-S Home
- This Issue
-
Next Article
On a class of semipositone problems with singular Trudinger-Moser nonlinearities
Compactness results for linearly perturbed Yamabe problem on manifolds with boundary
Department of Mathematics, University of Pisa, Largo B. Pontecorvo 5, 56126 Pisa, Italy |
Let $ (M,g) $ a compact Riemannian $ n $-dimensional manifold. It is well know that, under certain hypothesis, in the conformal class of $ g $ there are scalar-flat metrics that have $ \partial M $ as a constant mean curvature hypersurface. Also, under certain hypothesis, it is known that these metrics are a compact set. In this paper we prove that, both in the case of umbilic and non-umbilic boundary, if we linearly perturb the mean curvature term $ h_{g} $ with a negative smooth function $ \alpha, $ the set of solutions of Yamabe problem is still a compact set.
References:
[1] |
S. de M. Almaraz,
A compactness theorem for scalar-flat metrics on manifolds with boundary, Calc. Var. Partial Differential Equations, 41 (2011), 341-386.
doi: 10.1007/s00526-010-0365-8. |
[2] |
S. de M. Almaraz,
Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differential Equations, 251 (2011), 1813-1840.
doi: 10.1016/j.jde.2011.04.013. |
[3] |
S. de M. Almaraz,
An existence theorem of conformal scalar-flat metrics on manifolds with boundary, Pacific J. Math., 248 (2010), 1-22.
doi: 10.2140/pjm.2010.248.1. |
[4] |
S. Almaraz, O. S. de Queiroz and S. Wang,
A compactness theorem for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal., 277 (2019), 2092-2116.
doi: 10.1016/j.jfa.2019.01.001. |
[5] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics. Springer, Berlin, 1998.
doi: 10.1007/978-3-662-13006-3. |
[6] |
S. S. Chen, Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in higher dimensions, preprint, arXiv: 0912.1302, (2010). |
[7] |
O. Druet,
Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not., 2004 (2004), 1143-1191.
doi: 10.1155/S1073792804133278. |
[8] |
O. Druet and E. Hebey,
Blow-up examples for second order elliptic PDEs of critical sobolev growth, Trans. Amer. Math. Soc., 357 (2005), 1915-1929.
doi: 10.1090/S0002-9947-04-03681-5. |
[9] |
J. F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math., 136, (1992), 1–50.
doi: 10.2307/2946545. |
[10] |
V. Felli and M. Ould Ahmedou,
Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries, Math. Z., 244 (2003), 175-210.
doi: 10.1007/s00209-002-0486-7. |
[11] |
M. Ghimenti and A. M. Micheletti, Compactness for conformal scalar-flat metrics on umbilic boundary manifolds, Nonlinear Anal, 200 (2020), 30 pp
doi: 10.1016/j.na.2020.111992. |
[12] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Blow-up phenomena for linearly perturbed Yamabe problem on manifolds with umbilic boundary, J. Differential Equations, 267 (2019), 587-618.
doi: 10.1016/j.jde.2019.01.023. |
[13] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Linear perturbation of the Yamabe problem on manifolds with boundary, J. Geom. Anal., 28 (2018), 1315-1340.
doi: 10.1007/s12220-017-9864-6. |
[14] |
G. Giraud,
Sur le probléme de Dirichlet généralisé, Ann. Sci. École Norm. Sup., 46 (1929), 131-145.
|
[15] |
Z.-C. Han and Y. Li,
The Yamabe problem on manifolds with boundary: Existence and compactness results, Duke Math, J., 99 (1999), 489-542.
doi: 10.1215/S0012-7094-99-09916-7. |
[16] |
S. Kim, M. Musso and J. Wei, Compactness of scalar-flat conformal metrics on low-dimensional manifolds manifolds with constant mean curvature on boundary, preprint, arXiv: 1906.01317. |
[17] |
Y. Li and M. Zhu,
Yamabe type equations on three dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.
doi: 10.1142/S021919979900002X. |
[18] |
F. C. Marques,
Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ. Math. J., 54 (2005), 1599-1620.
doi: 10.1512/iumj.2005.54.2590. |
[19] |
F. C. Marques,
A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differ. Geom., 71 (2005), 315-346.
doi: 10.4310/jdg/1143651772. |
[20] |
F. C. Marques,
Compactness and non compactness for Yamabe-type problems, Progress in Nonlinear Differential Equation and their Applications, 86 (2015), 121-131.
doi: 10.1007/978-3-319-19902-3_9. |
[21] |
M. Mayer and C. B. Ndiaye,
Barycenter technique and the Riemann mapping problem of Cherrier-Escobar, J. Differential Geom., 107 (2017), 519-560.
doi: 10.4310/jdg/1508551224. |
[22] |
R. Schoen and D. Zhang,
Prescribed scalar curvature on the $n$-sphere, Calc. Var. Partial Differ. Equ., 4 (1996), 1-25.
doi: 10.1007/BF01322307. |
show all references
References:
[1] |
S. de M. Almaraz,
A compactness theorem for scalar-flat metrics on manifolds with boundary, Calc. Var. Partial Differential Equations, 41 (2011), 341-386.
doi: 10.1007/s00526-010-0365-8. |
[2] |
S. de M. Almaraz,
Blow-up phenomena for scalar-flat metrics on manifolds with boundary, J. Differential Equations, 251 (2011), 1813-1840.
doi: 10.1016/j.jde.2011.04.013. |
[3] |
S. de M. Almaraz,
An existence theorem of conformal scalar-flat metrics on manifolds with boundary, Pacific J. Math., 248 (2010), 1-22.
doi: 10.2140/pjm.2010.248.1. |
[4] |
S. Almaraz, O. S. de Queiroz and S. Wang,
A compactness theorem for scalar-flat metrics on 3-manifolds with boundary, J. Funct. Anal., 277 (2019), 2092-2116.
doi: 10.1016/j.jfa.2019.01.001. |
[5] |
T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics. Springer, Berlin, 1998.
doi: 10.1007/978-3-662-13006-3. |
[6] |
S. S. Chen, Conformal deformation to scalar flat metrics with constant mean curvature on the boundary in higher dimensions, preprint, arXiv: 0912.1302, (2010). |
[7] |
O. Druet,
Compactness for Yamabe metrics in low dimensions, Int. Math. Res. Not., 2004 (2004), 1143-1191.
doi: 10.1155/S1073792804133278. |
[8] |
O. Druet and E. Hebey,
Blow-up examples for second order elliptic PDEs of critical sobolev growth, Trans. Amer. Math. Soc., 357 (2005), 1915-1929.
doi: 10.1090/S0002-9947-04-03681-5. |
[9] |
J. F. Escobar, Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary, Ann. of Math., 136, (1992), 1–50.
doi: 10.2307/2946545. |
[10] |
V. Felli and M. Ould Ahmedou,
Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries, Math. Z., 244 (2003), 175-210.
doi: 10.1007/s00209-002-0486-7. |
[11] |
M. Ghimenti and A. M. Micheletti, Compactness for conformal scalar-flat metrics on umbilic boundary manifolds, Nonlinear Anal, 200 (2020), 30 pp
doi: 10.1016/j.na.2020.111992. |
[12] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Blow-up phenomena for linearly perturbed Yamabe problem on manifolds with umbilic boundary, J. Differential Equations, 267 (2019), 587-618.
doi: 10.1016/j.jde.2019.01.023. |
[13] |
M. Ghimenti, A. M. Micheletti and A. Pistoia,
Linear perturbation of the Yamabe problem on manifolds with boundary, J. Geom. Anal., 28 (2018), 1315-1340.
doi: 10.1007/s12220-017-9864-6. |
[14] |
G. Giraud,
Sur le probléme de Dirichlet généralisé, Ann. Sci. École Norm. Sup., 46 (1929), 131-145.
|
[15] |
Z.-C. Han and Y. Li,
The Yamabe problem on manifolds with boundary: Existence and compactness results, Duke Math, J., 99 (1999), 489-542.
doi: 10.1215/S0012-7094-99-09916-7. |
[16] |
S. Kim, M. Musso and J. Wei, Compactness of scalar-flat conformal metrics on low-dimensional manifolds manifolds with constant mean curvature on boundary, preprint, arXiv: 1906.01317. |
[17] |
Y. Li and M. Zhu,
Yamabe type equations on three dimensional Riemannian manifolds, Commun. Contemp. Math., 1 (1999), 1-50.
doi: 10.1142/S021919979900002X. |
[18] |
F. C. Marques,
Existence results for the Yamabe problem on manifolds with boundary, Indiana Univ. Math. J., 54 (2005), 1599-1620.
doi: 10.1512/iumj.2005.54.2590. |
[19] |
F. C. Marques,
A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differ. Geom., 71 (2005), 315-346.
doi: 10.4310/jdg/1143651772. |
[20] |
F. C. Marques,
Compactness and non compactness for Yamabe-type problems, Progress in Nonlinear Differential Equation and their Applications, 86 (2015), 121-131.
doi: 10.1007/978-3-319-19902-3_9. |
[21] |
M. Mayer and C. B. Ndiaye,
Barycenter technique and the Riemann mapping problem of Cherrier-Escobar, J. Differential Geom., 107 (2017), 519-560.
doi: 10.4310/jdg/1508551224. |
[22] |
R. Schoen and D. Zhang,
Prescribed scalar curvature on the $n$-sphere, Calc. Var. Partial Differ. Equ., 4 (1996), 1-25.
doi: 10.1007/BF01322307. |
[1] |
Carlos Gutierrez, Víctor Guíñez. Simple umbilic points on surfaces immersed in $\R^4$. Discrete and Continuous Dynamical Systems, 2003, 9 (4) : 877-900. doi: 10.3934/dcds.2003.9.877 |
[2] |
Jorge Sotomayor, Ronaldo Garcia. Codimension two umbilic points on surfaces immersed in $R^3$. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 293-308. doi: 10.3934/dcds.2007.17.293 |
[3] |
Gael Diebou Yomgne. On a nonlinear Laplace equation related to the boundary Yamabe problem in the upper-half space. Communications on Pure and Applied Analysis, 2022, 21 (2) : 517-539. doi: 10.3934/cpaa.2021186 |
[4] |
Rodrigo Samprogna, Tomás Caraballo. Pullback attractor for a dynamic boundary non-autonomous problem with Infinite Delay. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 509-523. doi: 10.3934/dcdsb.2017195 |
[5] |
Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete and Continuous Dynamical Systems, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861 |
[6] |
Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete and Continuous Dynamical Systems, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967 |
[7] |
Shaodong Wang. Infinitely many blowing-up solutions for Yamabe-type problems on manifolds with boundary. Communications on Pure and Applied Analysis, 2018, 17 (1) : 209-230. doi: 10.3934/cpaa.2018013 |
[8] |
Orazio Arena. A problem of boundary controllability for a plate. Evolution Equations and Control Theory, 2013, 2 (4) : 557-562. doi: 10.3934/eect.2013.2.557 |
[9] |
Serena Dipierro, Enrico Valdinoci. (Non)local and (non)linear free boundary problems. Discrete and Continuous Dynamical Systems - S, 2018, 11 (3) : 465-476. doi: 10.3934/dcdss.2018025 |
[10] |
Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the non-homogeneous initial boundary problem for an Ostrovsky-Hunter type equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (12) : 3357-3389. doi: 10.3934/dcdss.2020236 |
[11] |
Shenghao Li, Min Chen, Bing-Yu Zhang. A non-homogeneous boundary value problem of the sixth order Boussinesq equation in a quarter plane. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2505-2525. doi: 10.3934/dcds.2018104 |
[12] |
Monica Marras, Nicola Pintus, Giuseppe Viglialoro. On the lifespan of classical solutions to a non-local porous medium problem with nonlinear boundary conditions. Discrete and Continuous Dynamical Systems - S, 2020, 13 (7) : 2033-2045. doi: 10.3934/dcdss.2020156 |
[13] |
J. F. Padial. Existence and estimate of the location of the free-boundary for a non local inverse elliptic-parabolic problem arising in nuclear fusion. Conference Publications, 2011, 2011 (Special) : 1176-1185. doi: 10.3934/proc.2011.2011.1176 |
[14] |
Xilu Wang, Xiaoliang Cheng. Continuous dependence and optimal control of a dynamic elastic-viscoplastic contact problem with non-monotone boundary conditions. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2021064 |
[15] |
Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems and Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038 |
[16] |
Pak Tung Ho, Rong Tang. Fractional Yamabe solitons and fractional Nirenberg problem. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3215-3234. doi: 10.3934/cpaa.2021103 |
[17] |
Toyohiko Aiki. A free boundary problem for an elastic material. Conference Publications, 2007, 2007 (Special) : 10-17. doi: 10.3934/proc.2007.2007.10 |
[18] |
Plamen Stefanov and Gunther Uhlmann. Recent progress on the boundary rigidity problem. Electronic Research Announcements, 2005, 11: 64-70. |
[19] |
X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure and Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419 |
[20] |
Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete and Continuous Dynamical Systems, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]