• Previous Article
    An extension of the landweber regularization for a backward time fractional wave problem
  • DCDS-S Home
  • This Issue
  • Next Article
    Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria
doi: 10.3934/dcdss.2020456

Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion

1. 

IMAG UMR 5149 CNRS, Université de Nîmes, Place Gabriel Péri, 30000 Nîmes, France

2. 

Laboratoire Paul Painlevé CNRS UMR 8524, et équipe projet INRIA PARADYSE, Université de Lille, 59 655 Villeneuve d'Ascq cedex, France

3. 

LAMFA UMR 7352 CNRS, Université de Picardie Jules Verne, 33, rue Saint-Leu, 80039 Amiens, France

* Corresponding author: serge.dumont@unimes.fr

This article is dedicated to the memory of Ezzeddine Zahrouni.

Received  February 2020 Revised  September 2020 Published  November 2020

In this article, the asymptotic behavior of the solution to the following one dimensional Schrödinger equations with white noise dispersion
$ idu + u_{xx}\circ dW+ |u|^{p-1}udt = 0 $
is studied. Here the equation is written in the { Stratonovich} formulation, and
$ W(t) $
is a standard real valued Brownian motion. After establishing the global well-posedness, theoretical proof and numerical investigations are provided showing that, for a deterministic small enough initial data in
$ L^1_x\cap H^1_x $
, the expectation of the
$ L^\infty_x $
norm of the solutions decay to zero at
$ O(t^{-\frac14}) $
as
$ t $
goes to
$ +\infty $
, as soon as
$ p>7 $
.
Citation: Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020456
References:
[1]

P. AntonelliJ.-C. Saut and C. Sparber, Well-posedness and averaging of NLS with time-periodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.   Google Scholar

[2]

R. BelaouarA. de Bouard and A. Debussche, Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, A. Stoch PDE: Anal Comp, 3 (2015), 103-132.  doi: 10.1007/s40072-015-0044-z.  Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[5]

M. ChenO. Goubet and Y. Mammeri, Generalized regularized long waves equations with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 319-342.  doi: 10.1007/s40072-016-0089-7.  Google Scholar

[6]

K. Chouk and M. Gubinelli, Nonlinear PDEs with modulated dispersion â… : Nonlinear Schrödinger equations, Comm. Partial Differential Equations, 40 (2015), 2047-2081.  doi: 10.1080/03605302.2015.1073300.  Google Scholar

[7]

A. de Bouard and A. Debussche, The nonlinear Schrödinger equation with white noise dispersion, J. Func. Anal., 259 (2010), 1300-1321.  doi: 10.1016/j.jfa.2010.04.002.  Google Scholar

[8]

A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appli., 96 (2011), 363-376.  doi: 10.1016/j.matpur.2011.02.002.  Google Scholar

[9]

R. Duboscq and R. Marty, Analysis of a splitting scheme for a class of random nonlinear partial differential equations, ESAIM: PS, 20 (2016), 572-589.  doi: 10.1051/ps/2016023.  Google Scholar

[10]

R. Duboscq and A. Reveillac, On a stochastic Hardy-Littlewood-Sobolev inequality with application to Strichartz estimates for a noisy dispersion, arXiv: 1711.07188v1 [math.AP], 2017. Google Scholar

[11]

G. FengerO. Goubet and Y. Mammeri, Numerical analysis of the midpoint scheme for the generalized Benjamin-Bona-Mahony equation with white noise dispersion, CiCP, 26 (2019), 1397-1414.  doi: 10.4208/cicp.2019.js60.02.  Google Scholar

[12]

N. Hayashi, E. Kaikina, P. Naumkin and A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884. Springer-Verlag, Berlin, 2006.  Google Scholar

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[14]

R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium, Comm. Math. Sci., 4 (2006), 679-705.  doi: 10.4310/CMS.2006.v4.n4.a1.  Google Scholar

show all references

References:
[1]

P. AntonelliJ.-C. Saut and C. Sparber, Well-posedness and averaging of NLS with time-periodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.   Google Scholar

[2]

R. BelaouarA. de Bouard and A. Debussche, Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, A. Stoch PDE: Anal Comp, 3 (2015), 103-132.  doi: 10.1007/s40072-015-0044-z.  Google Scholar

[3]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011.  Google Scholar

[4]

T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[5]

M. ChenO. Goubet and Y. Mammeri, Generalized regularized long waves equations with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 319-342.  doi: 10.1007/s40072-016-0089-7.  Google Scholar

[6]

K. Chouk and M. Gubinelli, Nonlinear PDEs with modulated dispersion â… : Nonlinear Schrödinger equations, Comm. Partial Differential Equations, 40 (2015), 2047-2081.  doi: 10.1080/03605302.2015.1073300.  Google Scholar

[7]

A. de Bouard and A. Debussche, The nonlinear Schrödinger equation with white noise dispersion, J. Func. Anal., 259 (2010), 1300-1321.  doi: 10.1016/j.jfa.2010.04.002.  Google Scholar

[8]

A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appli., 96 (2011), 363-376.  doi: 10.1016/j.matpur.2011.02.002.  Google Scholar

[9]

R. Duboscq and R. Marty, Analysis of a splitting scheme for a class of random nonlinear partial differential equations, ESAIM: PS, 20 (2016), 572-589.  doi: 10.1051/ps/2016023.  Google Scholar

[10]

R. Duboscq and A. Reveillac, On a stochastic Hardy-Littlewood-Sobolev inequality with application to Strichartz estimates for a noisy dispersion, arXiv: 1711.07188v1 [math.AP], 2017. Google Scholar

[11]

G. FengerO. Goubet and Y. Mammeri, Numerical analysis of the midpoint scheme for the generalized Benjamin-Bona-Mahony equation with white noise dispersion, CiCP, 26 (2019), 1397-1414.  doi: 10.4208/cicp.2019.js60.02.  Google Scholar

[12]

N. Hayashi, E. Kaikina, P. Naumkin and A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884. Springer-Verlag, Berlin, 2006.  Google Scholar

[13]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[14]

R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium, Comm. Math. Sci., 4 (2006), 679-705.  doi: 10.4310/CMS.2006.v4.n4.a1.  Google Scholar

Figure 1.  Graphical representation of the function $ f $ (-) and the convex upper bound $ g $ (- - -)
Figure 2.  $ L^2 $ convergence with respect to the time step of discretization $ \Delta t $
Figure 3.  Space and time evolution of the approximate solution of the nonlinear equation with $ p = 5 $ for one stochastic process (left: real part; right: imaginary part)
Figure 4.  Space and time evolution of the approximate solution of the nonlinear equation with $ p = 13 $ for one stochastic process (left: real part; right: imaginary part)
Figure 5.  $ L^\infty $ decay rate with respect to time for the deterministic and the stochastic problem
[1]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

[2]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[3]

Xiaohu Wang, Dingshi Li, Jun Shen. Wong-Zakai approximations and attractors for stochastic wave equations driven by additive noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2829-2855. doi: 10.3934/dcdsb.2020207

[4]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[5]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

[6]

Christina Surulescu, Nicolae Surulescu. Modeling and simulation of some cell dispersion problems by a nonparametric method. Mathematical Biosciences & Engineering, 2011, 8 (2) : 263-277. doi: 10.3934/mbe.2011.8.263

[7]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[8]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[9]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020210

[10]

Wolf-Jüergen Beyn, Janosch Rieger. The implicit Euler scheme for one-sided Lipschitz differential inclusions. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 409-428. doi: 10.3934/dcdsb.2010.14.409

[11]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[12]

Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055

[13]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[14]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[15]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[16]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[17]

Jaume Llibre, Luci Any Roberto. On the periodic solutions of a class of Duffing differential equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 277-282. doi: 10.3934/dcds.2013.33.277

[18]

Matthias Erbar, Jan Maas. Gradient flow structures for discrete porous medium equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1355-1374. doi: 10.3934/dcds.2014.34.1355

[19]

Qiang Guo, Dong Liang. An adaptive wavelet method and its analysis for parabolic equations. Numerical Algebra, Control & Optimization, 2013, 3 (2) : 327-345. doi: 10.3934/naco.2013.3.327

[20]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (47)
  • HTML views (123)
  • Cited by (0)

Other articles
by authors

[Back to Top]