
-
Previous Article
An extension of the landweber regularization for a backward time fractional wave problem
- DCDS-S Home
- This Issue
-
Next Article
The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data
Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion
1. | IMAG UMR 5149 CNRS, Université de Nîmes, Place Gabriel Péri, 30000 Nîmes, France |
2. | Laboratoire Paul Painlevé CNRS UMR 8524, et équipe projet INRIA PARADYSE, Université de Lille, 59 655 Villeneuve d'Ascq cedex, France |
3. | LAMFA UMR 7352 CNRS, Université de Picardie Jules Verne, 33, rue Saint-Leu, 80039 Amiens, France |
$ idu + u_{xx}\circ dW+ |u|^{p-1}udt = 0 $ |
$ W(t) $ |
$ L^1_x\cap H^1_x $ |
$ L^\infty_x $ |
$ O(t^{-\frac14}) $ |
$ t $ |
$ +\infty $ |
$ p>7 $ |
References:
[1] |
P. Antonelli, J.-C. Saut and C. Sparber,
Well-posedness and averaging of NLS with time-periodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.
|
[2] |
R. Belaouar, A. de Bouard and A. Debussche,
Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, A. Stoch PDE: Anal Comp, 3 (2015), 103-132.
doi: 10.1007/s40072-015-0044-z. |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. |
[4] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[5] |
M. Chen, O. Goubet and Y. Mammeri,
Generalized regularized long waves equations with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 319-342.
doi: 10.1007/s40072-016-0089-7. |
[6] |
K. Chouk and M. Gubinelli,
Nonlinear PDEs with modulated dispersion â… : Nonlinear Schrödinger equations, Comm. Partial Differential Equations, 40 (2015), 2047-2081.
doi: 10.1080/03605302.2015.1073300. |
[7] |
A. de Bouard and A. Debussche,
The nonlinear Schrödinger equation with white noise dispersion, J. Func. Anal., 259 (2010), 1300-1321.
doi: 10.1016/j.jfa.2010.04.002. |
[8] |
A. Debussche and Y. Tsutsumi,
1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appli., 96 (2011), 363-376.
doi: 10.1016/j.matpur.2011.02.002. |
[9] |
R. Duboscq and R. Marty,
Analysis of a splitting scheme for a class of random nonlinear partial differential equations, ESAIM: PS, 20 (2016), 572-589.
doi: 10.1051/ps/2016023. |
[10] |
R. Duboscq and A. Reveillac, On a stochastic Hardy-Littlewood-Sobolev inequality with application to Strichartz estimates for a noisy dispersion, arXiv: 1711.07188v1 [math.AP], 2017. |
[11] |
G. Fenger, O. Goubet and Y. Mammeri,
Numerical analysis of the midpoint scheme for the generalized Benjamin-Bona-Mahony equation with white noise dispersion, CiCP, 26 (2019), 1397-1414.
doi: 10.4208/cicp.2019.js60.02. |
[12] |
N. Hayashi, E. Kaikina, P. Naumkin and A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884. Springer-Verlag, Berlin, 2006. |
[13] |
T. Kato and G. Ponce,
Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[14] |
R. Marty,
On a splitting scheme for the nonlinear Schrödinger equation in a random medium, Comm. Math. Sci., 4 (2006), 679-705.
doi: 10.4310/CMS.2006.v4.n4.a1. |
show all references
References:
[1] |
P. Antonelli, J.-C. Saut and C. Sparber,
Well-posedness and averaging of NLS with time-periodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68.
|
[2] |
R. Belaouar, A. de Bouard and A. Debussche,
Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, A. Stoch PDE: Anal Comp, 3 (2015), 103-132.
doi: 10.1007/s40072-015-0044-z. |
[3] |
H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. |
[4] |
T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003.
doi: 10.1090/cln/010. |
[5] |
M. Chen, O. Goubet and Y. Mammeri,
Generalized regularized long waves equations with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 319-342.
doi: 10.1007/s40072-016-0089-7. |
[6] |
K. Chouk and M. Gubinelli,
Nonlinear PDEs with modulated dispersion â… : Nonlinear Schrödinger equations, Comm. Partial Differential Equations, 40 (2015), 2047-2081.
doi: 10.1080/03605302.2015.1073300. |
[7] |
A. de Bouard and A. Debussche,
The nonlinear Schrödinger equation with white noise dispersion, J. Func. Anal., 259 (2010), 1300-1321.
doi: 10.1016/j.jfa.2010.04.002. |
[8] |
A. Debussche and Y. Tsutsumi,
1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appli., 96 (2011), 363-376.
doi: 10.1016/j.matpur.2011.02.002. |
[9] |
R. Duboscq and R. Marty,
Analysis of a splitting scheme for a class of random nonlinear partial differential equations, ESAIM: PS, 20 (2016), 572-589.
doi: 10.1051/ps/2016023. |
[10] |
R. Duboscq and A. Reveillac, On a stochastic Hardy-Littlewood-Sobolev inequality with application to Strichartz estimates for a noisy dispersion, arXiv: 1711.07188v1 [math.AP], 2017. |
[11] |
G. Fenger, O. Goubet and Y. Mammeri,
Numerical analysis of the midpoint scheme for the generalized Benjamin-Bona-Mahony equation with white noise dispersion, CiCP, 26 (2019), 1397-1414.
doi: 10.4208/cicp.2019.js60.02. |
[12] |
N. Hayashi, E. Kaikina, P. Naumkin and A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884. Springer-Verlag, Berlin, 2006. |
[13] |
T. Kato and G. Ponce,
Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.
doi: 10.1002/cpa.3160410704. |
[14] |
R. Marty,
On a splitting scheme for the nonlinear Schrödinger equation in a random medium, Comm. Math. Sci., 4 (2006), 679-705.
doi: 10.4310/CMS.2006.v4.n4.a1. |




[1] |
Tian Zhang, Chuanhou Gao. Stability with general decay rate of hybrid neutral stochastic pantograph differential equations driven by Lévy noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3725-3747. doi: 10.3934/dcdsb.2021204 |
[2] |
Angelo Favini, Georgy A. Sviridyuk, Alyona A. Zamyshlyaeva. One Class of Sobolev Type Equations of Higher Order with Additive "White Noise". Communications on Pure and Applied Analysis, 2016, 15 (1) : 185-196. doi: 10.3934/cpaa.2016.15.185 |
[3] |
Guanggan Chen, Qin Li, Yunyun Wei. Approximate dynamics of a class of stochastic wave equations with white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 73-101. doi: 10.3934/dcdsb.2021033 |
[4] |
Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248 |
[5] |
Xinfu Chen, Carey Caginalp, Jianghao Hao, Yajing Zhang. Effects of white noise in multistable dynamics. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1805-1825. doi: 10.3934/dcdsb.2013.18.1805 |
[6] |
Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077 |
[7] |
Yanzhao Cao, Li Yin. Spectral Galerkin method for stochastic wave equations driven by space-time white noise. Communications on Pure and Applied Analysis, 2007, 6 (3) : 607-617. doi: 10.3934/cpaa.2007.6.607 |
[8] |
Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318 |
[9] |
Ying Hu, Shanjian Tang. Nonlinear backward stochastic evolutionary equations driven by a space-time white noise. Mathematical Control and Related Fields, 2018, 8 (3&4) : 739-751. doi: 10.3934/mcrf.2018032 |
[10] |
Tianlong Shen, Jianhua Huang, Caibin Zeng. Time fractional and space nonlocal stochastic boussinesq equations driven by gaussian white noise. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1523-1533. doi: 10.3934/dcdsb.2018056 |
[11] |
Tran Ngoc Thach, Devendra Kumar, Nguyen Hoang Luc, Nguyen Huy Tuan. Existence and regularity results for stochastic fractional pseudo-parabolic equations driven by white noise. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 481-499. doi: 10.3934/dcdss.2021118 |
[12] |
Xiang Lv. Existence of unstable stationary solutions for nonlinear stochastic differential equations with additive white noise. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2313-2323. doi: 10.3934/dcdsb.2021133 |
[13] |
Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008 |
[14] |
Santiago Cano-Casanova. Decay rate at infinity of the positive solutions of a generalized class of $T$homas-Fermi equations. Conference Publications, 2011, 2011 (Special) : 240-249. doi: 10.3934/proc.2011.2011.240 |
[15] |
Takeshi Taniguchi. The existence and decay estimates of the solutions to $3$D stochastic Navier-Stokes equations with additive noise in an exterior domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4323-4341. doi: 10.3934/dcds.2014.34.4323 |
[16] |
Yan Wang, Lei Wang, Yanxiang Zhao, Aimin Song, Yanping Ma. A stochastic model for microbial fermentation process under Gaussian white noise environment. Numerical Algebra, Control and Optimization, 2015, 5 (4) : 381-392. doi: 10.3934/naco.2015.5.381 |
[17] |
Boris P. Belinskiy, Peter Caithamer. Stochastic stability of some mechanical systems with a multiplicative white noise. Conference Publications, 2003, 2003 (Special) : 91-99. doi: 10.3934/proc.2003.2003.91 |
[18] |
Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete and Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175 |
[19] |
Yuguo Lin, Daqing Jiang. Long-time behaviour of a perturbed SIR model by white noise. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1873-1887. doi: 10.3934/dcdsb.2013.18.1873 |
[20] |
Luis J. Roman, Marcus Sarkis. Stochastic Galerkin method for elliptic spdes: A white noise approach. Discrete and Continuous Dynamical Systems - B, 2006, 6 (4) : 941-955. doi: 10.3934/dcdsb.2006.6.941 |
2020 Impact Factor: 2.425
Tools
Metrics
Other articles
by authors
[Back to Top]