In this article, the asymptotic behavior of the solution to the following one dimensional Schrödinger equations with white noise dispersion
$ idu + u_{xx}\circ dW+ |u|^{p-1}udt = 0 $
is studied. Here the equation is written in the { Stratonovich} formulation, and $ W(t) $ is a standard real valued Brownian motion. After establishing the global well-posedness, theoretical proof and numerical investigations are provided showing that, for a deterministic small enough initial data in $ L^1_x\cap H^1_x $, the expectation of the $ L^\infty_x $ norm of the solutions decay to zero at $ O(t^{-\frac14}) $ as $ t $ goes to $ +\infty $, as soon as $ p>7 $.
Citation: |
[1] | P. Antonelli, J.-C. Saut and C. Sparber, Well-posedness and averaging of NLS with time-periodic dispersion management, Adv. Diff. Eq., 18 (2013), 49-68. |
[2] | R. Belaouar, A. de Bouard and A. Debussche, Numerical analysis of the nonlinear Schrödinger equation with white noise dispersion, A. Stoch PDE: Anal Comp, 3 (2015), 103-132. doi: 10.1007/s40072-015-0044-z. |
[3] | H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext. Springer, New York, 2011. |
[4] | T. Cazenave, Semilinear Schrödinger Equations, Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010. |
[5] | M. Chen, O. Goubet and Y. Mammeri, Generalized regularized long waves equations with white noise dispersion, Stoch. Partial Differ. Equ. Anal. Comput., 5 (2017), 319-342. doi: 10.1007/s40072-016-0089-7. |
[6] | K. Chouk and M. Gubinelli, Nonlinear PDEs with modulated dispersion â… : Nonlinear Schrödinger equations, Comm. Partial Differential Equations, 40 (2015), 2047-2081. doi: 10.1080/03605302.2015.1073300. |
[7] | A. de Bouard and A. Debussche, The nonlinear Schrödinger equation with white noise dispersion, J. Func. Anal., 259 (2010), 1300-1321. doi: 10.1016/j.jfa.2010.04.002. |
[8] | A. Debussche and Y. Tsutsumi, 1D quintic nonlinear Schrodinger equation with white noise dispersion, J. Math. Pures Appli., 96 (2011), 363-376. doi: 10.1016/j.matpur.2011.02.002. |
[9] | R. Duboscq and R. Marty, Analysis of a splitting scheme for a class of random nonlinear partial differential equations, ESAIM: PS, 20 (2016), 572-589. doi: 10.1051/ps/2016023. |
[10] | R. Duboscq and A. Reveillac, On a stochastic Hardy-Littlewood-Sobolev inequality with application to Strichartz estimates for a noisy dispersion, arXiv: 1711.07188v1 [math.AP], 2017. |
[11] | G. Fenger, O. Goubet and Y. Mammeri, Numerical analysis of the midpoint scheme for the generalized Benjamin-Bona-Mahony equation with white noise dispersion, CiCP, 26 (2019), 1397-1414. doi: 10.4208/cicp.2019.js60.02. |
[12] | N. Hayashi, E. Kaikina, P. Naumkin and A. Shishmarev, Asymptotics for Dissipative Nonlinear Equations, Lecture Notes in Mathematics, 1884. Springer-Verlag, Berlin, 2006. |
[13] | T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907. doi: 10.1002/cpa.3160410704. |
[14] | R. Marty, On a splitting scheme for the nonlinear Schrödinger equation in a random medium, Comm. Math. Sci., 4 (2006), 679-705. doi: 10.4310/CMS.2006.v4.n4.a1. |
Graphical representation of the function
Space and time evolution of the approximate solution of the nonlinear equation with
Space and time evolution of the approximate solution of the nonlinear equation with