doi: 10.3934/dcdss.2020457

Analysis of a model for tumor growth and lactate exchanges in a glioma

1. 

La Rochelle Université, LaSIE UMR CNRS 7356, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/B, I-41125 Modena, Italy

3. 

Laboratoire I3M et Laboratoire de Mathématiques et Applications, Université de Poitiers, UMR CNRS 7348

4. 

Equipe DACTIM-MIS, Site du Futuroscope - Téléport 2, 11 Boulevard Marie et Pierre Curie - Bâtiment H3 - TSA 61125, 86073 Poitiers Cedex 9, France

5. 

CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France

* Corresponding author: Laurence Cherfils

Received  March 2020 Published  November 2020

Our aim in this paper is to study a mathematical model for tumor growth and lactate exchanges in a glioma. We prove the existence of nonnegative (i.e. biologically relevant) solutions and, under proper assumptions, the uniqueness of the solution. We also state the permanence of the tumor when necrosis is not taken into account in the model and obtain linear stability results. We end the paper with numerical simulations.

Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020457
References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.  Google Scholar

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.  Google Scholar

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16.   Google Scholar

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.  Google Scholar

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.  Google Scholar

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.  Google Scholar

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403.   Google Scholar

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.  Google Scholar

show all references

References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.  Google Scholar

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.  Google Scholar

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16.   Google Scholar

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.  Google Scholar

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.  Google Scholar

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.  Google Scholar

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403.   Google Scholar

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.  Google Scholar

Figure 1.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 0.025mM $ inside and $ \varphi_0 = 3.854 $ outside the tumor area, $ \psi_0 = 0.329mM $ inside and $ \psi_0 = 1.256mM $ outside the tumor area.)
Figure 5.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 1.817mM $ inside and $ \varphi_0 = 0.915mM $ outside the tumor area, $ \psi_0 = 2.291mM $ inside and $ \psi_0 = 0.557mM $ outside the tumor area.)
Figure 2.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 3.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 4.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (0.8; 2.5), initially outside the tumor (blue)
Figure 6.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 7.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 8.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (1; 2.5), initially outside the tumor (blue)
[1]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[2]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[3]

A. Kochergin. Well-approximable angles and mixing for flows on T^2 with nonsingular fixed points. Electronic Research Announcements, 2004, 10: 113-121.

[4]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[5]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[6]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[7]

Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094

[8]

Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212

[9]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[10]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[11]

Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks & Heterogeneous Media, 2018, 13 (3) : 479-491. doi: 10.3934/nhm.2018021

[12]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[13]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[14]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[15]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[16]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[18]

Alexander A. Davydov, Massimo Giulietti, Stefano Marcugini, Fernanda Pambianco. Linear nonbinary covering codes and saturating sets in projective spaces. Advances in Mathematics of Communications, 2011, 5 (1) : 119-147. doi: 10.3934/amc.2011.5.119

[19]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[20]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (26)
  • HTML views (123)
  • Cited by (0)

[Back to Top]