August  2021, 14(8): 2729-2749. doi: 10.3934/dcdss.2020457

Analysis of a model for tumor growth and lactate exchanges in a glioma

1. 

La Rochelle Université, LaSIE UMR CNRS 7356, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/B, I-41125 Modena, Italy

3. 

Laboratoire I3M et Laboratoire de Mathématiques et Applications, Université de Poitiers, UMR CNRS 7348

4. 

Equipe DACTIM-MIS, Site du Futuroscope - Téléport 2, 11 Boulevard Marie et Pierre Curie - Bâtiment H3 - TSA 61125, 86073 Poitiers Cedex 9, France

5. 

CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France

* Corresponding author: Laurence Cherfils

Received  March 2020 Published  August 2021 Early access  November 2020

Our aim in this paper is to study a mathematical model for tumor growth and lactate exchanges in a glioma. We prove the existence of nonnegative (i.e. biologically relevant) solutions and, under proper assumptions, the uniqueness of the solution. We also state the permanence of the tumor when necrosis is not taken into account in the model and obtain linear stability results. We end the paper with numerical simulations.

Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2729-2749. doi: 10.3934/dcdss.2020457
References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16. 

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403. 

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.

show all references

References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16. 

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403. 

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.

Figure 1.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 0.025mM $ inside and $ \varphi_0 = 3.854 $ outside the tumor area, $ \psi_0 = 0.329mM $ inside and $ \psi_0 = 1.256mM $ outside the tumor area.)
Figure 5.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 1.817mM $ inside and $ \varphi_0 = 0.915mM $ outside the tumor area, $ \psi_0 = 2.291mM $ inside and $ \psi_0 = 0.557mM $ outside the tumor area.)
Figure 2.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 3.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 4.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (0.8; 2.5), initially outside the tumor (blue)
Figure 6.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 7.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 8.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (1; 2.5), initially outside the tumor (blue)
[1]

Fujun Zhou, Shangbin Cui. Well-posedness and stability of a multidimensional moving boundary problem modeling the growth of tumor cord. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 929-943. doi: 10.3934/dcds.2008.21.929

[2]

Joachim Escher, Anca-Voichita Matioc. Well-posedness and stability analysis for a moving boundary problem modelling the growth of nonnecrotic tumors. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 573-596. doi: 10.3934/dcdsb.2011.15.573

[3]

Jean-Pierre Françoise, Hongjun Ji. The stability analysis of brain lactate kinetics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2135-2143. doi: 10.3934/dcdss.2020182

[4]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure and Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[5]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 203-209. doi: 10.3934/dcdss.2020011

[6]

Alberto Bressan, Michele Palladino. Well-posedness of a model for the growth of tree stems and vines. Discrete and Continuous Dynamical Systems, 2018, 38 (4) : 2047-2064. doi: 10.3934/dcds.2018083

[7]

Jean-Daniel Djida, Arran Fernandez, Iván Area. Well-posedness results for fractional semi-linear wave equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 569-597. doi: 10.3934/dcdsb.2019255

[8]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[9]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure and Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[10]

Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687

[11]

Philip Gerlee, Alexander R. A. Anderson. Diffusion-limited tumour growth: Simulations and analysis. Mathematical Biosciences & Engineering, 2010, 7 (2) : 385-400. doi: 10.3934/mbe.2010.7.385

[12]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[13]

Rudolf Olach, Vincent Lučanský, Božena Dorociaková. The model of nutrients influence on the tumor growth. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2607-2619. doi: 10.3934/dcdsb.2021150

[14]

Vishal Vasan, Bernard Deconinck. Well-posedness of boundary-value problems for the linear Benjamin-Bona-Mahony equation. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 3171-3188. doi: 10.3934/dcds.2013.33.3171

[15]

Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure and Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030

[16]

Nathanael Skrepek. Well-posedness of linear first order port-Hamiltonian Systems on multidimensional spatial domains. Evolution Equations and Control Theory, 2021, 10 (4) : 965-1006. doi: 10.3934/eect.2020098

[17]

Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29 (6) : 3581-3607. doi: 10.3934/era.2021052

[18]

K. Domelevo. Well-posedness of a kinetic model of dispersed two-phase flow with point-particles and stability of travelling waves. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 591-607. doi: 10.3934/dcdsb.2002.2.591

[19]

Stefan Meyer, Mathias Wilke. Global well-posedness and exponential stability for Kuznetsov's equation in $L_p$-spaces. Evolution Equations and Control Theory, 2013, 2 (2) : 365-378. doi: 10.3934/eect.2013.2.365

[20]

Ahmed Bchatnia, Aissa Guesmia. Well-posedness and asymptotic stability for the Lamé system with infinite memories in a bounded domain. Mathematical Control and Related Fields, 2014, 4 (4) : 451-463. doi: 10.3934/mcrf.2014.4.451

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (234)
  • HTML views (315)
  • Cited by (0)

[Back to Top]