doi: 10.3934/dcdss.2020457

Analysis of a model for tumor growth and lactate exchanges in a glioma

1. 

La Rochelle Université, LaSIE UMR CNRS 7356, Avenue Michel Crépeau, F-17042 La Rochelle Cedex, France

2. 

Università di Modena e Reggio Emilia, Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Via Campi 213/B, I-41125 Modena, Italy

3. 

Laboratoire I3M et Laboratoire de Mathématiques et Applications, Université de Poitiers, UMR CNRS 7348

4. 

Equipe DACTIM-MIS, Site du Futuroscope - Téléport 2, 11 Boulevard Marie et Pierre Curie - Bâtiment H3 - TSA 61125, 86073 Poitiers Cedex 9, France

5. 

CHU de Poitiers, 2 rue de la Milétrie, 86000 Poitiers, France

* Corresponding author: Laurence Cherfils

Received  March 2020 Published  November 2020

Our aim in this paper is to study a mathematical model for tumor growth and lactate exchanges in a glioma. We prove the existence of nonnegative (i.e. biologically relevant) solutions and, under proper assumptions, the uniqueness of the solution. We also state the permanence of the tumor when necrosis is not taken into account in the model and obtain linear stability results. We end the paper with numerical simulations.

Citation: Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020457
References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.  Google Scholar

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.  Google Scholar

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16.   Google Scholar

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.  Google Scholar

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.  Google Scholar

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.  Google Scholar

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403.   Google Scholar

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.  Google Scholar

show all references

References:
[1]

A. AubertR. CostalatP. J. Magistretti and L. Pellerin, Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation, Proc. National Acad. Sci. USA, 102 (2005), 16448-16453.  doi: 10.1073/pnas.0505427102.  Google Scholar

[2]

M. Conti, S. Gatti and A. Miranville, Mathematical analysis of a model for proliterative-to-invasive transition of hypoxic glioma cells,, Nonlinear Analysis, 189 (2019), Article 111572, 17 pages. doi: 10.1016/j.na.2019.111572.  Google Scholar

[3]

R. GuillevinA. Miranville and A. Perrillat-Mercerot, On a reaction-diffusion system associated with brain lactate kinetics, Electronic J. Diff. Eqn., 23 (2017), 1-16.   Google Scholar

[4]

C. GuillevinR. GuillevinA. Miranville and A. Perrillat-Mercerot, Analysis of a Mathematical model for brain lactate kinetics, Mathematical Biosciences and Engineering, 15 (2018), 1225-1242.  doi: 10.3934/mbe.2018056.  Google Scholar

[5]

J. B. McGillenC. J. KellyA. Martínez-GonzálezN. K. MartinE. A. GaffneyP. K. Maini and V. M. Pérez-García, Glucose-lactate metabolic cooperation in cancer: Insights from a spatial mathematical model and implications for targeted therapy, J. Theoret. Biol., 361 (2014), 190-203.  doi: 10.1016/j.jtbi.2014.09.018.  Google Scholar

[6]

B. Mendoza-JuezA. Martínez-GonzálezG. F. Calvo and V. M. Peréz-García, A mathematical model for the glucose-lactate metabolism of in vitro cancer cells, Bull. Math. Biol., 74 (2012), 1125-1142.  doi: 10.1007/s11538-011-9711-z.  Google Scholar

[7]

A. Miranville, Mathematical analysis of a parabolic-elliptic model for brain lactate kinetics in Solvability, regularity, and optimal control of boundary value problems for PDEs, Springer INdAM Ser., 22 (2017), 379-403.   Google Scholar

[8]

A. Perrillat-MercerotN. BourmeysterC. GuillevinA. Miranville and R. Guillevin, Mathematical modeling of substrates fluxes and tumor growth in the brain, Acta Biotheoretica, 67 (2019), 149-175.  doi: 10.1007/s10441-019-09343-1.  Google Scholar

Figure 1.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 0.025mM $ inside and $ \varphi_0 = 3.854 $ outside the tumor area, $ \psi_0 = 0.329mM $ inside and $ \psi_0 = 1.256mM $ outside the tumor area.)
Figure 5.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 0. ($ { } u_0 (x, y) = 0.1e^{-10(x^2 +(y-2.5)^2)} $, $ \varphi_0 = 1.817mM $ inside and $ \varphi_0 = 0.915mM $ outside the tumor area, $ \psi_0 = 2.291mM $ inside and $ \psi_0 = 0.557mM $ outside the tumor area.)
Figure 2.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 3.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 4.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (0.8; 2.5), initially outside the tumor (blue)
Figure 6.  Tumor (left) and sum of the lactate concentrations $ \varphi+ \psi $ (right) at time t = 10
Figure 7.  Evolution of the tumor concentration (left) and the lactate concentrations (right) with respect to time at the center of the tumor (point $ (0; 2.5) $). Evolution of the tumor diameter (below) with respect to time
Figure 8.  Concerning the tumor (left), intracellular lactate (right) and capillary lactate (below), comparison between the concentrations at the center of the tumor (green) and at the point (1; 2.5), initially outside the tumor (blue)
[1]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[2]

Tadahiro Oh, Yuzhao Wang. On global well-posedness of the modified KdV equation in modulation spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2971-2992. doi: 10.3934/dcds.2020393

[3]

Tayeb Hadj Kaddour, Michael Reissig. Global well-posedness for effectively damped wave models with nonlinear memory. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021057

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2699-2723. doi: 10.3934/dcds.2020382

[5]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[6]

Pengyan Ding, Zhijian Yang. Well-posedness and attractor for a strongly damped wave equation with supercritical nonlinearity on $ \mathbb{R}^{N} $. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1059-1076. doi: 10.3934/cpaa.2021006

[7]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[8]

Abraham Sylla. Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks & Heterogeneous Media, 2021, 16 (2) : 221-256. doi: 10.3934/nhm.2021005

[9]

Andreia Chapouto. A remark on the well-posedness of the modified KdV equation in the Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3915-3950. doi: 10.3934/dcds.2021022

[10]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[11]

Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021083

[12]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021018

[13]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic & Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

[14]

Vakhtang Putkaradze, Stuart Rogers. Numerical simulations of a rolling ball robot actuated by internal point masses. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 143-207. doi: 10.3934/naco.2020021

[15]

Matthias Ebenbeck, Harald Garcke, Robert Nürnberg. Cahn–Hilliard–Brinkman systems for tumour growth. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021034

[16]

John Villavert. On problems with weighted elliptic operator and general growth nonlinearities. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021023

[17]

Wenbin Yang, Yujing Gao, Xiaojuan Wang. Diffusion modeling of tumor-CD4$ ^+ $-cytokine interactions with treatments: asymptotic behavior and stationary patterns. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021090

[18]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3759-3779. doi: 10.3934/dcds.2021015

[19]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[20]

Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]