November  2021, 14(11): 4035-4067. doi: 10.3934/dcdss.2020458

A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

Received  March 2020 Revised  August 2020 Published  November 2021 Early access  November 2020

Fund Project: The author was supported by the grant D1117/1-1 of the German Science Foundation (DFG)

After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jüngel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic–hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids ex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.

Citation: Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4035-4067. doi: 10.3934/dcdss.2020458
References:
[1]

D. Bothe and P.-E. Druet, The free energy of incompressible liquid mixtures: some mathematical insights, In preparation.

[2]

D. Bothe and P.-E. Druet, Mass transport in multicomponent compressible fluids: local and global well-posedness in classes of strong solutions for general class-one models, 2019. Available at http://www.wias-berlin.de/preprint/2658/wias_preprints_2658.pdf, and at arXiv: 2001.08970 [math.AP].

[3]

D. Bothe and P.-E. Druet, On the structure of continuum thermodynamical diffusion fluxes: a novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach, 2020. Available at http://www.wias-berlin.de/preprint/2749/wias_preprints_2749.pdf, and arXiv: 2008.05327 [math-ph].

[4]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.  doi: 10.1007/s00707-014-1275-1.

[5]

D. Bothe and J. Prüss, Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition – the isothermal incompressible case, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 673-696.  doi: 10.3934/dcdss.2017034.

[6]

R. Brdicka, Grundlagen der physikalischen Chemie, Deutscher Verlag der Wissenschaften, Berlin, 1981.

[7]

X. Chen and A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Commun. Math. Phys., 340 (2015), 471-497.  doi: 10.1007/s00220-015-2472-z.

[8]

W. Dreyer, P.-E. Druet, P. Gajewski and C. Guhlke, Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes, Z. Angew. Math. Phys., 71 (2020), Paper No. 119, 68 pp. Open access: https://doi.org/10.1007/s00033-020-01341-5. doi: 10.1007/s00033-020-01341-5.

[9]

P.-E. Druet, Analysis of improved Nernst-Planck-Poisson models of isothermal compressible electrolytes subject to chemical reactions: The case of a degenerate mobility matrix, Preprint 2321 of the WIAS, 2016. Available at http://www.wias-berlin.de/preprint/2321/wias_preprints_2321.pdf.

[10]

P.-E. Druet, Global–in–time existence for liquid mixtures subject to a generalised incompressibility constraint, Preprint 2622 of the WIAS, 2019. Available at http://www.wias-berlin.de/preprint/2622/wias_preprints_2622.pdf.

[11]

E. FeireislA. Novotnỳ and H. Petzeltovà, On the existence of globally defined weak solutions to the Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.  doi: 10.1007/PL00000976.

[12]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1580-6.

[13]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass–action kinetics, Nonlinear Analysis: Theory, Methods & Applications, 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.

[14]

P.-L. Lions, Mathematical Topics in Fluid Dynamics. Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998.

[15]

Ladyzenskaja, Solonnikov and Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Volume 23 of Translations of mathematical monographs, AMS, 1968.

[16]

P.B. MuchaM. Pokorny and E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution, SIAM J. Math. Anal., 47 (2015), 3747-3797.  doi: 10.1137/140957640.

[17]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl., 104 (2015), 102-138.  doi: 10.1016/j.matpur.2015.02.003.

[18]

T. PiaseckiY. Shibata and E. Zatorska, On strong dynamics of compressible two-component mixture flow, SIAM J. Math. Anal., 51 (2019), 2793-2849.  doi: 10.1137/17M1151134.

show all references

References:
[1]

D. Bothe and P.-E. Druet, The free energy of incompressible liquid mixtures: some mathematical insights, In preparation.

[2]

D. Bothe and P.-E. Druet, Mass transport in multicomponent compressible fluids: local and global well-posedness in classes of strong solutions for general class-one models, 2019. Available at http://www.wias-berlin.de/preprint/2658/wias_preprints_2658.pdf, and at arXiv: 2001.08970 [math.AP].

[3]

D. Bothe and P.-E. Druet, On the structure of continuum thermodynamical diffusion fluxes: a novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach, 2020. Available at http://www.wias-berlin.de/preprint/2749/wias_preprints_2749.pdf, and arXiv: 2008.05327 [math-ph].

[4]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.  doi: 10.1007/s00707-014-1275-1.

[5]

D. Bothe and J. Prüss, Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition – the isothermal incompressible case, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 673-696.  doi: 10.3934/dcdss.2017034.

[6]

R. Brdicka, Grundlagen der physikalischen Chemie, Deutscher Verlag der Wissenschaften, Berlin, 1981.

[7]

X. Chen and A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Commun. Math. Phys., 340 (2015), 471-497.  doi: 10.1007/s00220-015-2472-z.

[8]

W. Dreyer, P.-E. Druet, P. Gajewski and C. Guhlke, Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes, Z. Angew. Math. Phys., 71 (2020), Paper No. 119, 68 pp. Open access: https://doi.org/10.1007/s00033-020-01341-5. doi: 10.1007/s00033-020-01341-5.

[9]

P.-E. Druet, Analysis of improved Nernst-Planck-Poisson models of isothermal compressible electrolytes subject to chemical reactions: The case of a degenerate mobility matrix, Preprint 2321 of the WIAS, 2016. Available at http://www.wias-berlin.de/preprint/2321/wias_preprints_2321.pdf.

[10]

P.-E. Druet, Global–in–time existence for liquid mixtures subject to a generalised incompressibility constraint, Preprint 2622 of the WIAS, 2019. Available at http://www.wias-berlin.de/preprint/2622/wias_preprints_2622.pdf.

[11]

E. FeireislA. Novotnỳ and H. Petzeltovà, On the existence of globally defined weak solutions to the Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.  doi: 10.1007/PL00000976.

[12]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1580-6.

[13]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass–action kinetics, Nonlinear Analysis: Theory, Methods & Applications, 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.

[14]

P.-L. Lions, Mathematical Topics in Fluid Dynamics. Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998.

[15]

Ladyzenskaja, Solonnikov and Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Volume 23 of Translations of mathematical monographs, AMS, 1968.

[16]

P.B. MuchaM. Pokorny and E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution, SIAM J. Math. Anal., 47 (2015), 3747-3797.  doi: 10.1137/140957640.

[17]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl., 104 (2015), 102-138.  doi: 10.1016/j.matpur.2015.02.003.

[18]

T. PiaseckiY. Shibata and E. Zatorska, On strong dynamics of compressible two-component mixture flow, SIAM J. Math. Anal., 51 (2019), 2793-2849.  doi: 10.1137/17M1151134.

[1]

Eduard Feireisl, Hana Petzeltová, Konstantina Trivisa. Multicomponent reactive flows: Global-in-time existence for large data. Communications on Pure and Applied Analysis, 2008, 7 (5) : 1017-1047. doi: 10.3934/cpaa.2008.7.1017

[2]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[3]

Feng Li, Yuxiang Li. Global existence of weak solution in a chemotaxis-fluid system with nonlinear diffusion and rotational flux. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5409-5436. doi: 10.3934/dcdsb.2019064

[4]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure and Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[5]

Vandana Sharma, Jyotshana V. Prajapat. Global existence of solutions to reaction diffusion systems with mass transport type boundary conditions on an evolving domain. Discrete and Continuous Dynamical Systems, 2022, 42 (1) : 109-135. doi: 10.3934/dcds.2021109

[6]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[7]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[8]

Xian-Gao Liu, Jie Qing. Globally weak solutions to the flow of compressible liquid crystals system. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 757-788. doi: 10.3934/dcds.2013.33.757

[9]

Eduard Feireisl. On weak solutions to a diffuse interface model of a binary mixture of compressible fluids. Discrete and Continuous Dynamical Systems - S, 2016, 9 (1) : 173-183. doi: 10.3934/dcdss.2016.9.173

[10]

Huanyao Wen, Changjiang Zhu. Remarks on global weak solutions to a two-fluid type model. Communications on Pure and Applied Analysis, 2021, 20 (7&8) : 2839-2856. doi: 10.3934/cpaa.2021072

[11]

Bernard Ducomet, Eduard Feireisl, Hana Petzeltová, Ivan Straškraba. Global in time weak solutions for compressible barotropic self-gravitating fluids. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 113-130. doi: 10.3934/dcds.2004.11.113

[12]

Georgia Karali, Takashi Suzuki, Yoshio Yamada. Global-in-time behavior of the solution to a Gierer-Meinhardt system. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2885-2900. doi: 10.3934/dcds.2013.33.2885

[13]

Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87

[14]

Jean-Jérôme Casanova. Existence of time-periodic strong solutions to a fluid–structure system. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3291-3313. doi: 10.3934/dcds.2019136

[15]

Hong Cai, Zhong Tan, Qiuju Xu. Time periodic solutions of the non-isentropic compressible fluid models of Korteweg type. Kinetic and Related Models, 2015, 8 (1) : 29-51. doi: 10.3934/krm.2015.8.29

[16]

Keisuke Takasao. Existence of weak solution for mean curvature flow with transport term and forcing term. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2655-2677. doi: 10.3934/cpaa.2020116

[17]

Hannes Eberlein, Michael Růžička. Global weak solutions for an newtonian fluid interacting with a Koiter type shell under natural boundary conditions. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4093-4140. doi: 10.3934/dcdss.2020419

[18]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[19]

Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski. The existence of weak solutions to immiscible compressible two-phase flow in porous media: The case of fields with different rock-types. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1217-1251. doi: 10.3934/dcdsb.2013.18.1217

[20]

Kelong Cheng, Cheng Wang, Steven M. Wise, Zixia Yuan. Global-in-time Gevrey regularity solutions for the functionalized Cahn-Hilliard equation. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2211-2229. doi: 10.3934/dcdss.2020186

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (287)
  • HTML views (455)
  • Cited by (0)

Other articles
by authors

[Back to Top]