doi: 10.3934/dcdss.2020458

A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion

Weierstrass Institute, Mohrenstr. 39, 10117 Berlin, Germany

Received  March 2020 Revised  August 2020 Published  November 2020

Fund Project: The author was supported by the grant D1117/1-1 of the German Science Foundation (DFG)

After the pioneering work by Giovangigli on mathematics of multicomponent flows, several attempts were made to introduce global weak solutions for the PDEs describing the dynamics of fluid mixtures. While the incompressible case with constant density was enlighted well enough due to results by Chen and Jüngel (isothermal case), or Marion and Temam, some open questions remain for the weak solution theory of gas mixtures with their corresponding equations of mixed parabolic–hyperbolic type. For instance, Mucha, Pokorny and Zatorska showed the possibility to stabilise the hyperbolic component by means of the Bresch-Desjardins technique and a regularisation of pressure preventing vacuum. The result by Dreyer, Druet, Gajewski and Guhlke avoids ex machina stabilisations, but the mathematical assumption that the Onsager matrix is uniformly positive on certain subspaces leads, in the dilute limit, to infinite diffusion velocities which are not compatible with the Maxwell-Stefan form of diffusion fluxes. In this paper, we prove the existence of global weak solutions for isothermal and ideal compressible mixtures with natural diffusion. The main new tool is an asymptotic condition imposed at low pressure on the binary Maxwell-Stefan diffusivities, which compensates possibly extreme behaviour of weak solutions in the rarefied regime.

Citation: Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020458
References:
[1]

D. Bothe and P.-E. Druet, The free energy of incompressible liquid mixtures: some mathematical insights, In preparation. Google Scholar

[2]

D. Bothe and P.-E. Druet, Mass transport in multicomponent compressible fluids: local and global well-posedness in classes of strong solutions for general class-one models, 2019. Available at http://www.wias-berlin.de/preprint/2658/wias_preprints_2658.pdf, and at arXiv: 2001.08970 [math.AP]. Google Scholar

[3]

D. Bothe and P.-E. Druet, On the structure of continuum thermodynamical diffusion fluxes: a novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach, 2020. Available at http://www.wias-berlin.de/preprint/2749/wias_preprints_2749.pdf, and arXiv: 2008.05327 [math-ph]. Google Scholar

[4]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.  doi: 10.1007/s00707-014-1275-1.  Google Scholar

[5]

D. Bothe and J. Prüss, Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition – the isothermal incompressible case, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 673-696.  doi: 10.3934/dcdss.2017034.  Google Scholar

[6]

R. Brdicka, Grundlagen der physikalischen Chemie, Deutscher Verlag der Wissenschaften, Berlin, 1981. Google Scholar

[7]

X. Chen and A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Commun. Math. Phys., 340 (2015), 471-497.  doi: 10.1007/s00220-015-2472-z.  Google Scholar

[8]

W. Dreyer, P.-E. Druet, P. Gajewski and C. Guhlke, Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes, Z. Angew. Math. Phys., 71 (2020), Paper No. 119, 68 pp. Open access: https://doi.org/10.1007/s00033-020-01341-5. doi: 10.1007/s00033-020-01341-5.  Google Scholar

[9]

P.-E. Druet, Analysis of improved Nernst-Planck-Poisson models of isothermal compressible electrolytes subject to chemical reactions: The case of a degenerate mobility matrix, Preprint 2321 of the WIAS, 2016. Available at http://www.wias-berlin.de/preprint/2321/wias_preprints_2321.pdf. Google Scholar

[10]

P.-E. Druet, Global–in–time existence for liquid mixtures subject to a generalised incompressibility constraint, Preprint 2622 of the WIAS, 2019. Available at http://www.wias-berlin.de/preprint/2622/wias_preprints_2622.pdf. Google Scholar

[11]

E. FeireislA. Novotnỳ and H. Petzeltovà, On the existence of globally defined weak solutions to the Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[12]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1580-6.  Google Scholar

[13]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass–action kinetics, Nonlinear Analysis: Theory, Methods & Applications, 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.  Google Scholar

[14]

P.-L. Lions, Mathematical Topics in Fluid Dynamics. Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998.  Google Scholar

[15]

Ladyzenskaja, Solonnikov and Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Volume 23 of Translations of mathematical monographs, AMS, 1968. Google Scholar

[16]

P.B. MuchaM. Pokorny and E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution, SIAM J. Math. Anal., 47 (2015), 3747-3797.  doi: 10.1137/140957640.  Google Scholar

[17]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl., 104 (2015), 102-138.  doi: 10.1016/j.matpur.2015.02.003.  Google Scholar

[18]

T. PiaseckiY. Shibata and E. Zatorska, On strong dynamics of compressible two-component mixture flow, SIAM J. Math. Anal., 51 (2019), 2793-2849.  doi: 10.1137/17M1151134.  Google Scholar

show all references

References:
[1]

D. Bothe and P.-E. Druet, The free energy of incompressible liquid mixtures: some mathematical insights, In preparation. Google Scholar

[2]

D. Bothe and P.-E. Druet, Mass transport in multicomponent compressible fluids: local and global well-posedness in classes of strong solutions for general class-one models, 2019. Available at http://www.wias-berlin.de/preprint/2658/wias_preprints_2658.pdf, and at arXiv: 2001.08970 [math.AP]. Google Scholar

[3]

D. Bothe and P.-E. Druet, On the structure of continuum thermodynamical diffusion fluxes: a novel closure scheme and its relation to the Maxwell-Stefan and the Fick-Onsager approach, 2020. Available at http://www.wias-berlin.de/preprint/2749/wias_preprints_2749.pdf, and arXiv: 2008.05327 [math-ph]. Google Scholar

[4]

D. Bothe and W. Dreyer, Continuum thermodynamics of chemically reacting fluid mixtures, Acta Mech., 226 (2015), 1757-1805.  doi: 10.1007/s00707-014-1275-1.  Google Scholar

[5]

D. Bothe and J. Prüss, Modeling and analysis of reactive multi-component two-phase flows with mass transfer and phase transition – the isothermal incompressible case, Discrete Contin. Dyn. Syst. Ser. S, 10 (2017), 673-696.  doi: 10.3934/dcdss.2017034.  Google Scholar

[6]

R. Brdicka, Grundlagen der physikalischen Chemie, Deutscher Verlag der Wissenschaften, Berlin, 1981. Google Scholar

[7]

X. Chen and A. Jüngel, Analysis of an incompressible Navier-Stokes-Maxwell-Stefan system, Commun. Math. Phys., 340 (2015), 471-497.  doi: 10.1007/s00220-015-2472-z.  Google Scholar

[8]

W. Dreyer, P.-E. Druet, P. Gajewski and C. Guhlke, Existence of weak solutions for improved Nernst-Planck-Poisson models of compressible reacting electrolytes, Z. Angew. Math. Phys., 71 (2020), Paper No. 119, 68 pp. Open access: https://doi.org/10.1007/s00033-020-01341-5. doi: 10.1007/s00033-020-01341-5.  Google Scholar

[9]

P.-E. Druet, Analysis of improved Nernst-Planck-Poisson models of isothermal compressible electrolytes subject to chemical reactions: The case of a degenerate mobility matrix, Preprint 2321 of the WIAS, 2016. Available at http://www.wias-berlin.de/preprint/2321/wias_preprints_2321.pdf. Google Scholar

[10]

P.-E. Druet, Global–in–time existence for liquid mixtures subject to a generalised incompressibility constraint, Preprint 2622 of the WIAS, 2019. Available at http://www.wias-berlin.de/preprint/2622/wias_preprints_2622.pdf. Google Scholar

[11]

E. FeireislA. Novotnỳ and H. Petzeltovà, On the existence of globally defined weak solutions to the Navier-Stokes equations, Journal of Mathematical Fluid Mechanics, 3 (2001), 358-392.  doi: 10.1007/PL00000976.  Google Scholar

[12]

V. Giovangigli, Multicomponent Flow Modeling, Birkhäuser, Boston, 1999. doi: 10.1007/978-1-4612-1580-6.  Google Scholar

[13]

M. HerbergM. MeyriesJ. Prüss and M. Wilke, Reaction-diffusion systems of Maxwell-Stefan type with reversible mass–action kinetics, Nonlinear Analysis: Theory, Methods & Applications, 159 (2017), 264-284.  doi: 10.1016/j.na.2016.07.010.  Google Scholar

[14]

P.-L. Lions, Mathematical Topics in Fluid Dynamics. Vol. 2, Compressible Models, Oxford Science Publication, Oxford, 1998.  Google Scholar

[15]

Ladyzenskaja, Solonnikov and Ural'ceva, Linear and Quasilinear Equations of Parabolic Type, Volume 23 of Translations of mathematical monographs, AMS, 1968. Google Scholar

[16]

P.B. MuchaM. Pokorny and E. Zatorska, Heat-conducting, compressible mixtures with multicomponent diffusion: Construction of a weak solution, SIAM J. Math. Anal., 47 (2015), 3747-3797.  doi: 10.1137/140957640.  Google Scholar

[17]

M. Marion and R. Temam, Global existence for fully nonlinear reaction-diffusion systems describing multicomponent reactive flows, J. Math. Pures Appl., 104 (2015), 102-138.  doi: 10.1016/j.matpur.2015.02.003.  Google Scholar

[18]

T. PiaseckiY. Shibata and E. Zatorska, On strong dynamics of compressible two-component mixture flow, SIAM J. Math. Anal., 51 (2019), 2793-2849.  doi: 10.1137/17M1151134.  Google Scholar

[1]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[2]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[3]

Harumi Hattori, Aesha Lagha. Global existence and decay rates of the solutions for a chemotaxis system with Lotka-Volterra type model for chemoattractant and repellent. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021071

[4]

Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053

[5]

Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005

[6]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[7]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[8]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[9]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[10]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[11]

Izumi Takagi, Conghui Zhang. Existence and stability of patterns in a reaction-diffusion-ODE system with hysteresis in non-uniform media. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3109-3140. doi: 10.3934/dcds.2020400

[12]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[13]

Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021041

[14]

Paul Deuring. Spatial asymptotics of mild solutions to the time-dependent Oseen system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021044

[15]

Ling-Bing He, Li Xu. On the compressible Navier-Stokes equations in the whole space: From non-isentropic flow to isentropic flow. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3489-3530. doi: 10.3934/dcds.2021005

[16]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[17]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[18]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[19]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[20]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

2019 Impact Factor: 1.233

Article outline

[Back to Top]