November  2021, 14(11): 3925-3952. doi: 10.3934/dcdss.2020459

An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys

1. 

Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, CZ-186 75 Praha 8, Czech Republic

2. 

Institute of Thermomechanics, Czech Academy of Sciences, Dolejškova 5, CZ-182 00 Praha 8, Czech Republic

3. 

Institute of Physics, Czech Acad. Sci., Prague, Czech Republic, Na Slovance, CZ-18121 Praha 8, Czech Republic

4. 

Faculty of Nuclear Sciences and Physical Engineering, Czech Tech. Univ., Trojanova 13, CZ-120 00 Praha 2, Czech Republic

* Corresponding author: Barbora Benešová

Received  March 2020 Revised  June 2020 Published  November 2021 Early access  November 2020

Fund Project: This research has been partially supported from the grants 18-03834S (especially regarding the focus on shape memory alloys, experiments and modeling), 19-04956S (especially regarding the focus on the dynamic and nonlinear behavior) of Czech Science Foundation and LTAUSA18199 (especially regarding the focus on numerics) of MSMT CR, and also from the institutional support RVO: 61388998. Moreover, T.R. acknowledges a stay at Caltech in 2004 and discussions with Kaushik Bhattacharya about the isothermal variant of this sort of models

A phenomenological model for polycrystalline NiTi shape-memory alloys with a refined dissipation function is here enhanced by a thermomechanical coupling and rigorously analyzed as far as existence of weak solutions and numerical stability and convergence of the numerical approximation performed by a staggered time discretization. Moreover, the model is verified on one-dimensional computational simulations compared with real laboratory experiments on a NiTi wire.

Citation: Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 3925-3952. doi: 10.3934/dcdss.2020459
References:
[1]

R. Alessi and D. Bernardini, Analysis of localization phenomena in shape memory alloys bars by a variational approach, Int. J. Solids Struct., 73/74 (2015), 113-133.  doi: 10.1016/j.ijsolstr.2015.06.021.

[2]

J. ArghavaniF. AuricchioR. NaghdabadiA. Reali and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, Int. J. Plast., 26 (2010), 976-991. 

[3]

K. M. ArmattoeC. BoubyM. Haboussi and T. B. Zineb, Modeling of latent heat effects on phase transformation in shape memory alloy thin structures, Int. J. Solids Struct., 88/89 (2016), 283-295.  doi: 10.1016/j.ijsolstr.2016.02.024.

[4]

K. ArmattoeM. Haboussi and T. B. Zineb, A 2D finite element based on a nonlocal constitutive model describing localization and propagation of phase transformation in shape memory alloy thin structures, Int. J. Solids Struct., 51 (2014), 1208-1220.  doi: 10.1016/j.ijsolstr.2013.11.028.

[5]

F. AuricchioD. Fugazza and R. Desroches, Rate-dependent thermo-mechanical modelling of superelastic shape-memory alloys for seismic applications, Journal of Intelligent Material Systems and Structures, 19 (2008), 47-61.  doi: 10.1177/1045389X06073426.

[6]

A. Baêta-NevesM. Savi and P. Pacheco, On the Fremond's constitutive model for shape memory alloys, Mech. Res. Commun., 31 (2004), 677-688. 

[7]

Z. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Eng. Mech., 128 (2002), 1119-1149. 

[8]

N. J. Bechle and S. Kyriakides, Localization in NiTi tubes under bending, Int. J. Sol, 51 (2014), 967-980.  doi: 10.1016/j.ijsolstr.2013.11.023.

[9]

B. Benešová and T. Roubíček, Micro-to-meso scale limit for shape-memory-alloy models with thermal coupling, Multiscale Model. Simul, 10 (2012), 1059-1089.  doi: 10.1137/110852176.

[10]

K. BhattacharyaP. Purohit and B. Craciun, Mobility of twin and phase boundaries, J. de Physique IV, 112 (2003), 163-166.  doi: 10.1051/jp4:2003856.

[11]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.

[12]

E. BonettiM. Frémond and C. Lexcellent, Global existence and uniqueness for a thermomechanical model for shape memory alloys with partition of the strain, Math. Mech. Solids, 11 (2006), 251-275.  doi: 10.1177/1081286506040403.

[13]

C. BouvetS. Calloch and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loading, Eur. J. Mech. A, 23 (2004), 37-61.  doi: 10.1016/j.euromechsol.2003.09.005.

[14]

B.-C. ChangJ. A. Shaw and M. A. Iadicola, Thermodynamics of shape memory alloy wire: Modeling, experiments and application, Continuum Mech. Thermodyn., 18 (2006), 83-118.  doi: 10.1007/s00161-006-0022-9.

[15]

D. ChatziathanasiouY. ChemiskyG. Chatzigeorgiou and F. Meragni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, Int. J. Plast., 82 (2016), 192-224.  doi: 10.1016/j.ijplas.2016.03.005.

[16]

Y. ChemiskyA. DuvalE. Patoor and T. Ben Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mech. Mater., 43 (2011), 361-376.  doi: 10.1016/j.mechmat.2011.04.003.

[17]

C. CisseW. Zaki and T. Ben Zineb, A review of constitutive models and modeling techniques for shape memory alloys, Int. J. Plasticity, 76 (2016), 244-284.  doi: 10.1016/j.ijplas.2015.08.006.

[18]

C. Cisse, W. Zaki and T. Ben Zineb, A review of modeling techniques for advanced effects in shape memory alloy behavior, Smart Mater. Struct., 25 (2016), 103001. doi: 10.1088/0964-1726/25/10/103001.

[19]

T. J. Cognata, D. J. Hartl, R. Sheth and C. Dinsmore, A morphing radiator for high-turndown thermal control of crewed space exploration vehicles, in Proc. 23rd AIAA/AHS Adaptive Structures Conf., (2015), 5–9. doi: 10.2514/6.2015-1509.

[20]

P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys, Nonlinear Analysis, Th. Meth. Appl., 24 (1995), 1565-1579.  doi: 10.1016/0362-546X(94)00097-2.

[21]

P. ColliM. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys, Quarterly Appl. Math., 48 (1990), 31-47.  doi: 10.1090/qam/1040232.

[22]

P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermo-mechanical evolution of shape memory alloys, Nonlinear Anal., 18 (1992), 873-888.  doi: 10.1016/0362-546X(92)90228-7.

[23]

P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Part. Diff. Eq., 15 (1990), 737-756.  doi: 10.1080/03605309908820706.

[24]

F. D. FischerJ. Svoboda and H. Petryk, Thermodynamic extremal principles for irreversible processes in materials science, Acta Mater., 67 (2014), 1-20.  doi: 10.1016/j.actamat.2013.11.050.

[25]

M. Frémond, Matériaux à mémoire de forme, C.R. Acad. Sci. Paris Sér.II, 304 (1987), 239-244. 

[26]

M. Frémond and S. Miyazaki, Shape Memory Alloys, Springer, Wien, 1996.

[27]

M. FrostB. Benešová and P. Sedlák, A microscopically motivated constitutive model for shape memory alloys: Formulation, analysis and computations, Math. Mech. Solids, 21 (2016), 358-382. 

[28]

M. Frost, B. Benešová, H. Seiner, M. Kružík, P. Šittner and P. Sedlák, Thermomechanical model for NiTi-based shape memory alloys covering macroscopic localization of martensitic transformation, Int. J. Solids Struct., (2020). doi: 10.1016/j.ijsolstr.2020.08.012.

[29]

M. FrostP. SedlákL. KadeřávekL. Heller and P. Šittner, Modeling of mechanical response of NiTi shape memory alloy subjected to combined thermal and non-proportional mechanical loading: A case study on helical spring actuator, J. Intel. Mat. Syst. Str., 27 (2016), 1927-1938. 

[30]

M. FrostP. SedlákA. Kruisová and M. Landa, Simulations of self-expanding braided stent using macroscopic model of NiTi shape memory alloys covering R-phase, J. Mater. Eng. Perform., 23 (2014), 2584-2590.  doi: 10.1007/s11665-014-0966-z.

[31]

C. Grabe and O. T. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. Solids Struct., 45 (2008), 1876-1895.  doi: 10.1016/j.ijsolstr.2007.10.029.

[32]

X. GuW. ZakiC. MorinZ. Moumni and W. Zhang, Time integration and assessment of a model for shape memory alloys considering multiaxial nonproportional loading cases, Int. J. Solids Struct., 54 (2015), 28-99.  doi: 10.1016/j.ijsolstr.2014.11.005.

[33]

M. R. Hajidehi and S. Stupkiewicz, Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, Int. J. Solids Struct., 135 (2018), 208-218. 

[34]

B. Halphen and Q. S. Nguyen, Sur les matériaux standard généralisés, J. Mécanique, 14 (1975), 39-63. 

[35]

M. A. Iadicola and J. A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plast., 20 (2004), 577-605.  doi: 10.1016/S0749-6419(03)00040-8.

[36]

K. JacobusH. Sehitoglu and M. Balzer, Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy, Metall, 27 (1996), 3066-3073.  doi: 10.1007/BF02663855.

[37]

J. M. JaniM. LearyA. Subic and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design, 56 (2014), 1078-1113. 

[38]

D. JiangS. Kyriakides and C. M. Landis, Propagation of phase transformation fronts in pseudoelastic niti tubes under uniaxial tension, Extrem Mech. Letters, 15 (2017), 113-121.  doi: 10.1016/j.eml.2017.06.006.

[39]

M. Jirásek and S. Rolshoven, Localization properties of strain-softening gradient plasticity models, Part Ⅱ: Theories with gradients of internal variables, Int. J. Solids Struct., 46 (2009), 2239-2254. 

[40]

P. Junker and K. Hackl, About the influence of heat conductivity on the mechanical behavior of poly-crystalline shape memory alloys, Int. J. Structural Changes in Solids, 3 (2011), 49-62. 

[41]

P. JunkerJ. Makowski and K. Hackl, The principle of the minimum of the dissipation potential for non-isothermal processes, Continuum Mech. Thermodyn., 26 (2014), 259-268.  doi: 10.1007/s00161-013-0299-4.

[42]

A. KellyA. P. Stebner and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation, J. Mech. Phys. Solids, 97 (2016), 197-224.  doi: 10.1016/j.jmps.2016.02.007.

[43]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019.

[44]

D. C. LagoudasP. B. EntchevP. PopovE. PatoorL. C. Brinson and X. Gao, Shape memory alloys, Part Ⅱ: Modeling of polycrystals, Mech. Mater., 38 (2006), 430-462.  doi: 10.1016/j.mechmat.2005.08.003.

[45]

D. C. LagoudasD. J. HartlY. ChemiskyL. G. Machado and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast., 32/33 (2012), 155-183.  doi: 10.1016/j.ijplas.2011.10.009.

[46]

P. Luig and O. T. Bruhns, On the modeling of shape memory alloys using tensorial internal variables, Mater. Sci. Engr. A, 481/482 (2008), 379-383.  doi: 10.1016/j.msea.2007.03.123.

[47]

G. A. Maugin, The Thermomechanics of Plasticity and Fracture, Cambridge Univ. Press, 1992. doi: 10.1017/CBO9781139172400.

[48]

A. MielkeL. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys, SIAM J. Math. Anal., 41 (2009), 1388-1414.  doi: 10.1137/080726215.

[49]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys, Adv. Math. Sci. Appl., 17 (2007), 667-685. 

[50]

A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Springer New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[51]

Q. S. Nguyen, Stability and Nonlinear Solid Mechanics, J.Wiley, Chichester, 2000.

[52]

K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge Univ. Press, 1998.

[53]

H. Petryk, Incremental energy minimization in dissipative solids, R. C. Mécanique, 331 (2003), 469-474.  doi: 10.1016/S1631-0721(03)00109-8.

[54]

E. A. Pieczyska, H. Tobushi and K. Kulasinski, Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera, Smart Mater. Struct., 22 (2013), 035007. doi: 10.1088/0964-1726/22/3/035007.

[55]

M. Razaee-Hajidehi, K. Tůma and S. Stupkiewicz, Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys, Int. J. Plasticity, 128 (2020), 102589. doi: 10.1016/j.ijplas.2019.08.014.

[56]

B. ReedlunnC. B. ChurchillE. E. NelsonJ. A. Shaw and S. H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids, 63 (2014), 506-537.  doi: 10.1016/j.jmps.2012.12.012.

[57]

T. Roubíček, Models of microstructure evolution in shape memory materials, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, Springer, Dordrecht, 170 (2004), 269–304. doi: 10.1007/1-4020-2623-4_12.

[58]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013.

[59]

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys, Smart Mater. Struct., 16 (2007), 1751-1765.  doi: 10.1088/0964-1726/16/5/030.

[60]

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys: The one-dimensional case, Smart Mater. Struct., 16 (2007), S51–S62. doi: 10.1088/0964-1726/16/1/S06.

[61]

L. Saint-SulpiceS. Arbab Chirani and S. Calloch, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mech. Mater., 41 (2009), 12-26.  doi: 10.1016/j.mechmat.2008.07.004.

[62]

P. SedlákM. FrostB. BenešováP. Šittner and T. Ben Zineb, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, Int. J. Plast., 39 (2012), 132-151. 

[63]

P. SedmákJ. PilchL. HellerJ. KopečekJ. WrightP. SedlákM. Frost and P. Šittner, Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load, Science, 353 (2016), 559-562. 

[64]

J. A. Shaw and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater., 45 (1997), 683-700.  doi: 10.1016/S1359-6454(96)00189-9.

[65]

P. ŠittnerY. Liu and V. Novák, On the origin of Lüders-like deformation of NiTi shape memory alloys, J. Mech. Phys. Solids, 53 (2005), 1719-1746. 

[66]

A. P. Stebner and L. C. Brinson, Explicit finite element implementation of an improved three dimensional constitutive model for shape memory alloys, Comput. Methods Appl. Mech. Eng., 257 (2013), 17-35.  doi: 10.1016/j.cma.2012.12.021.

[67]

S. Stupkiewicz and H. Petryk, A robust model of pseudoelasticity in shape memory alloys, Int. J. Numer. Meth. Engng., 93 (2013), 747-769.  doi: 10.1002/nme.4405.

[68]

M. ThomasováH. SeinerP. SedlákM. FrostM. ŠevčíkI. SzurmanR. KocichJ. DrahokoupilP. Šittner and M. Landa, Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining, Acta Materialia, 123 (2017), 146-156. 

[69]

H. TobushiY. ShimenoT. Hachisuka and K. Tanaka, Influence of strain rate on superelastic properties of TiNi shape memory alloy, Mech. Mater., 30 (1998), 141-150.  doi: 10.1016/S0167-6636(98)00041-6.

[70]

J. UchilK. P. MohanchandraK. Ganesh KumaraK. K. Mahesh and T. P. Murali, Thermal expansion in various phases of Nitinol using TMA, Physica B, 270 (1999), 289-297.  doi: 10.1016/S0921-4526(99)00186-6.

[71]

J. Wang, Z. Moumni, W. Zhang, Y. Xu and W. Zaki, A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation, Smart Mater. Struct., 26 (2017), 065006. doi: 10.1088/1361-665X/aa6c17.

[72]

W. Zaki and Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, 55 (2007), 2455-2490.  doi: 10.1016/j.jmps.2007.03.012.

[73]

X. ZhangP. FengY. HeT. Yu and Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in niti shape memory alloy strips, Int. J. Mech. Sci., 52 (2010), 1660-1670.  doi: 10.1016/j.ijmecsci.2010.08.007.

show all references

References:
[1]

R. Alessi and D. Bernardini, Analysis of localization phenomena in shape memory alloys bars by a variational approach, Int. J. Solids Struct., 73/74 (2015), 113-133.  doi: 10.1016/j.ijsolstr.2015.06.021.

[2]

J. ArghavaniF. AuricchioR. NaghdabadiA. Reali and S. Sohrabpour, A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings, Int. J. Plast., 26 (2010), 976-991. 

[3]

K. M. ArmattoeC. BoubyM. Haboussi and T. B. Zineb, Modeling of latent heat effects on phase transformation in shape memory alloy thin structures, Int. J. Solids Struct., 88/89 (2016), 283-295.  doi: 10.1016/j.ijsolstr.2016.02.024.

[4]

K. ArmattoeM. Haboussi and T. B. Zineb, A 2D finite element based on a nonlocal constitutive model describing localization and propagation of phase transformation in shape memory alloy thin structures, Int. J. Solids Struct., 51 (2014), 1208-1220.  doi: 10.1016/j.ijsolstr.2013.11.028.

[5]

F. AuricchioD. Fugazza and R. Desroches, Rate-dependent thermo-mechanical modelling of superelastic shape-memory alloys for seismic applications, Journal of Intelligent Material Systems and Structures, 19 (2008), 47-61.  doi: 10.1177/1045389X06073426.

[6]

A. Baêta-NevesM. Savi and P. Pacheco, On the Fremond's constitutive model for shape memory alloys, Mech. Res. Commun., 31 (2004), 677-688. 

[7]

Z. Bažant and M. Jirásek, Nonlocal integral formulations of plasticity and damage: Survey of progress, J. Eng. Mech., 128 (2002), 1119-1149. 

[8]

N. J. Bechle and S. Kyriakides, Localization in NiTi tubes under bending, Int. J. Sol, 51 (2014), 967-980.  doi: 10.1016/j.ijsolstr.2013.11.023.

[9]

B. Benešová and T. Roubíček, Micro-to-meso scale limit for shape-memory-alloy models with thermal coupling, Multiscale Model. Simul, 10 (2012), 1059-1089.  doi: 10.1137/110852176.

[10]

K. BhattacharyaP. Purohit and B. Craciun, Mobility of twin and phase boundaries, J. de Physique IV, 112 (2003), 163-166.  doi: 10.1051/jp4:2003856.

[11]

L. Boccardo and T. Gallouët, Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169.  doi: 10.1016/0022-1236(89)90005-0.

[12]

E. BonettiM. Frémond and C. Lexcellent, Global existence and uniqueness for a thermomechanical model for shape memory alloys with partition of the strain, Math. Mech. Solids, 11 (2006), 251-275.  doi: 10.1177/1081286506040403.

[13]

C. BouvetS. Calloch and C. Lexcellent, A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loading, Eur. J. Mech. A, 23 (2004), 37-61.  doi: 10.1016/j.euromechsol.2003.09.005.

[14]

B.-C. ChangJ. A. Shaw and M. A. Iadicola, Thermodynamics of shape memory alloy wire: Modeling, experiments and application, Continuum Mech. Thermodyn., 18 (2006), 83-118.  doi: 10.1007/s00161-006-0022-9.

[15]

D. ChatziathanasiouY. ChemiskyG. Chatzigeorgiou and F. Meragni, Modeling of coupled phase transformation and reorientation in shape memory alloys under non-proportional thermomechanical loading, Int. J. Plast., 82 (2016), 192-224.  doi: 10.1016/j.ijplas.2016.03.005.

[16]

Y. ChemiskyA. DuvalE. Patoor and T. Ben Zineb, Constitutive model for shape memory alloys including phase transformation, martensitic reorientation and twins accommodation, Mech. Mater., 43 (2011), 361-376.  doi: 10.1016/j.mechmat.2011.04.003.

[17]

C. CisseW. Zaki and T. Ben Zineb, A review of constitutive models and modeling techniques for shape memory alloys, Int. J. Plasticity, 76 (2016), 244-284.  doi: 10.1016/j.ijplas.2015.08.006.

[18]

C. Cisse, W. Zaki and T. Ben Zineb, A review of modeling techniques for advanced effects in shape memory alloy behavior, Smart Mater. Struct., 25 (2016), 103001. doi: 10.1088/0964-1726/25/10/103001.

[19]

T. J. Cognata, D. J. Hartl, R. Sheth and C. Dinsmore, A morphing radiator for high-turndown thermal control of crewed space exploration vehicles, in Proc. 23rd AIAA/AHS Adaptive Structures Conf., (2015), 5–9. doi: 10.2514/6.2015-1509.

[20]

P. Colli, Global existence for the three-dimensional Frémond model of shape memory alloys, Nonlinear Analysis, Th. Meth. Appl., 24 (1995), 1565-1579.  doi: 10.1016/0362-546X(94)00097-2.

[21]

P. ColliM. Frémond and A. Visintin, Thermo-mechanical evolution of shape memory alloys, Quarterly Appl. Math., 48 (1990), 31-47.  doi: 10.1090/qam/1040232.

[22]

P. Colli and J. Sprekels, Global existence for a three-dimensional model for the thermo-mechanical evolution of shape memory alloys, Nonlinear Anal., 18 (1992), 873-888.  doi: 10.1016/0362-546X(92)90228-7.

[23]

P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Part. Diff. Eq., 15 (1990), 737-756.  doi: 10.1080/03605309908820706.

[24]

F. D. FischerJ. Svoboda and H. Petryk, Thermodynamic extremal principles for irreversible processes in materials science, Acta Mater., 67 (2014), 1-20.  doi: 10.1016/j.actamat.2013.11.050.

[25]

M. Frémond, Matériaux à mémoire de forme, C.R. Acad. Sci. Paris Sér.II, 304 (1987), 239-244. 

[26]

M. Frémond and S. Miyazaki, Shape Memory Alloys, Springer, Wien, 1996.

[27]

M. FrostB. Benešová and P. Sedlák, A microscopically motivated constitutive model for shape memory alloys: Formulation, analysis and computations, Math. Mech. Solids, 21 (2016), 358-382. 

[28]

M. Frost, B. Benešová, H. Seiner, M. Kružík, P. Šittner and P. Sedlák, Thermomechanical model for NiTi-based shape memory alloys covering macroscopic localization of martensitic transformation, Int. J. Solids Struct., (2020). doi: 10.1016/j.ijsolstr.2020.08.012.

[29]

M. FrostP. SedlákL. KadeřávekL. Heller and P. Šittner, Modeling of mechanical response of NiTi shape memory alloy subjected to combined thermal and non-proportional mechanical loading: A case study on helical spring actuator, J. Intel. Mat. Syst. Str., 27 (2016), 1927-1938. 

[30]

M. FrostP. SedlákA. Kruisová and M. Landa, Simulations of self-expanding braided stent using macroscopic model of NiTi shape memory alloys covering R-phase, J. Mater. Eng. Perform., 23 (2014), 2584-2590.  doi: 10.1007/s11665-014-0966-z.

[31]

C. Grabe and O. T. Bruhns, On the viscous and strain rate dependent behavior of polycrystalline NiTi, Int. J. Solids Struct., 45 (2008), 1876-1895.  doi: 10.1016/j.ijsolstr.2007.10.029.

[32]

X. GuW. ZakiC. MorinZ. Moumni and W. Zhang, Time integration and assessment of a model for shape memory alloys considering multiaxial nonproportional loading cases, Int. J. Solids Struct., 54 (2015), 28-99.  doi: 10.1016/j.ijsolstr.2014.11.005.

[33]

M. R. Hajidehi and S. Stupkiewicz, Gradient-enhanced model and its micromorphic regularization for simulation of Lüders-like bands in shape memory alloys, Int. J. Solids Struct., 135 (2018), 208-218. 

[34]

B. Halphen and Q. S. Nguyen, Sur les matériaux standard généralisés, J. Mécanique, 14 (1975), 39-63. 

[35]

M. A. Iadicola and J. A. Shaw, Rate and thermal sensitivities of unstable transformation behavior in a shape memory alloy, Int. J. Plast., 20 (2004), 577-605.  doi: 10.1016/S0749-6419(03)00040-8.

[36]

K. JacobusH. Sehitoglu and M. Balzer, Effect of stress state on the stress-induced martensitic transformation in polycrystalline Ni-Ti alloy, Metall, 27 (1996), 3066-3073.  doi: 10.1007/BF02663855.

[37]

J. M. JaniM. LearyA. Subic and M. A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials and Design, 56 (2014), 1078-1113. 

[38]

D. JiangS. Kyriakides and C. M. Landis, Propagation of phase transformation fronts in pseudoelastic niti tubes under uniaxial tension, Extrem Mech. Letters, 15 (2017), 113-121.  doi: 10.1016/j.eml.2017.06.006.

[39]

M. Jirásek and S. Rolshoven, Localization properties of strain-softening gradient plasticity models, Part Ⅱ: Theories with gradients of internal variables, Int. J. Solids Struct., 46 (2009), 2239-2254. 

[40]

P. Junker and K. Hackl, About the influence of heat conductivity on the mechanical behavior of poly-crystalline shape memory alloys, Int. J. Structural Changes in Solids, 3 (2011), 49-62. 

[41]

P. JunkerJ. Makowski and K. Hackl, The principle of the minimum of the dissipation potential for non-isothermal processes, Continuum Mech. Thermodyn., 26 (2014), 259-268.  doi: 10.1007/s00161-013-0299-4.

[42]

A. KellyA. P. Stebner and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys that accounts for initiation and saturation of phase transformation, J. Mech. Phys. Solids, 97 (2016), 197-224.  doi: 10.1016/j.jmps.2016.02.007.

[43]

M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Springer, Cham/Switzerland, 2019.

[44]

D. C. LagoudasP. B. EntchevP. PopovE. PatoorL. C. Brinson and X. Gao, Shape memory alloys, Part Ⅱ: Modeling of polycrystals, Mech. Mater., 38 (2006), 430-462.  doi: 10.1016/j.mechmat.2005.08.003.

[45]

D. C. LagoudasD. J. HartlY. ChemiskyL. G. Machado and P. Popov, Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys, Int. J. Plast., 32/33 (2012), 155-183.  doi: 10.1016/j.ijplas.2011.10.009.

[46]

P. Luig and O. T. Bruhns, On the modeling of shape memory alloys using tensorial internal variables, Mater. Sci. Engr. A, 481/482 (2008), 379-383.  doi: 10.1016/j.msea.2007.03.123.

[47]

G. A. Maugin, The Thermomechanics of Plasticity and Fracture, Cambridge Univ. Press, 1992. doi: 10.1017/CBO9781139172400.

[48]

A. MielkeL. Paoli and A. Petrov, On existence and approximation for a 3D model of thermally induced phase transformations in shape-memory alloys, SIAM J. Math. Anal., 41 (2009), 1388-1414.  doi: 10.1137/080726215.

[49]

A. Mielke and A. Petrov, Thermally driven phase transformation in shape-memory alloys, Adv. Math. Sci. Appl., 17 (2007), 667-685. 

[50]

A. Mielke and T. Roubíček, Rate-Independent Systems: Theory and Application, Springer New York, 2015. doi: 10.1007/978-1-4939-2706-7.

[51]

Q. S. Nguyen, Stability and Nonlinear Solid Mechanics, J.Wiley, Chichester, 2000.

[52]

K. Otsuka and C. M. Wayman, Shape Memory Materials, Cambridge Univ. Press, 1998.

[53]

H. Petryk, Incremental energy minimization in dissipative solids, R. C. Mécanique, 331 (2003), 469-474.  doi: 10.1016/S1631-0721(03)00109-8.

[54]

E. A. Pieczyska, H. Tobushi and K. Kulasinski, Development of transformation bands in TiNi SMA for various stress and strain rates studied by a fast and sensitive infrared camera, Smart Mater. Struct., 22 (2013), 035007. doi: 10.1088/0964-1726/22/3/035007.

[55]

M. Razaee-Hajidehi, K. Tůma and S. Stupkiewicz, Gradient-enhanced thermomechanical 3D model for simulation of transformation patterns in pseudoelastic shape memory alloys, Int. J. Plasticity, 128 (2020), 102589. doi: 10.1016/j.ijplas.2019.08.014.

[56]

B. ReedlunnC. B. ChurchillE. E. NelsonJ. A. Shaw and S. H. Daly, Tension, compression, and bending of superelastic shape memory alloy tubes, J. Mech. Phys. Solids, 63 (2014), 506-537.  doi: 10.1016/j.jmps.2012.12.012.

[57]

T. Roubíček, Models of microstructure evolution in shape memory materials, Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, Springer, Dordrecht, 170 (2004), 269–304. doi: 10.1007/1-4020-2623-4_12.

[58]

T. Roubíček, Nonlinear Partial Differential Equations with Applications, Birkhäuser, Basel, 2nd edition, 2013.

[59]

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys, Smart Mater. Struct., 16 (2007), 1751-1765.  doi: 10.1088/0964-1726/16/5/030.

[60]

A. Sadjadpour and K. Bhattacharya, A micromechanics-inspired constitutive model for shape-memory alloys: The one-dimensional case, Smart Mater. Struct., 16 (2007), S51–S62. doi: 10.1088/0964-1726/16/1/S06.

[61]

L. Saint-SulpiceS. Arbab Chirani and S. Calloch, A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings, Mech. Mater., 41 (2009), 12-26.  doi: 10.1016/j.mechmat.2008.07.004.

[62]

P. SedlákM. FrostB. BenešováP. Šittner and T. Ben Zineb, Thermomechanical model for NiTi-based shape memory alloys including R-phase and material anisotropy under multi-axial loadings, Int. J. Plast., 39 (2012), 132-151. 

[63]

P. SedmákJ. PilchL. HellerJ. KopečekJ. WrightP. SedlákM. Frost and P. Šittner, Grain-resolved analysis of localized deformation in nickel-titanium wire under tensile load, Science, 353 (2016), 559-562. 

[64]

J. A. Shaw and S. Kyriakides, On the nucleation and propagation of phase transformation fronts in a NiTi alloy, Acta Mater., 45 (1997), 683-700.  doi: 10.1016/S1359-6454(96)00189-9.

[65]

P. ŠittnerY. Liu and V. Novák, On the origin of Lüders-like deformation of NiTi shape memory alloys, J. Mech. Phys. Solids, 53 (2005), 1719-1746. 

[66]

A. P. Stebner and L. C. Brinson, Explicit finite element implementation of an improved three dimensional constitutive model for shape memory alloys, Comput. Methods Appl. Mech. Eng., 257 (2013), 17-35.  doi: 10.1016/j.cma.2012.12.021.

[67]

S. Stupkiewicz and H. Petryk, A robust model of pseudoelasticity in shape memory alloys, Int. J. Numer. Meth. Engng., 93 (2013), 747-769.  doi: 10.1002/nme.4405.

[68]

M. ThomasováH. SeinerP. SedlákM. FrostM. ŠevčíkI. SzurmanR. KocichJ. DrahokoupilP. Šittner and M. Landa, Evolution of macroscopic elastic moduli of martensitic polycrystalline NiTi and NiTiCu shape memory alloys with pseudoplastic straining, Acta Materialia, 123 (2017), 146-156. 

[69]

H. TobushiY. ShimenoT. Hachisuka and K. Tanaka, Influence of strain rate on superelastic properties of TiNi shape memory alloy, Mech. Mater., 30 (1998), 141-150.  doi: 10.1016/S0167-6636(98)00041-6.

[70]

J. UchilK. P. MohanchandraK. Ganesh KumaraK. K. Mahesh and T. P. Murali, Thermal expansion in various phases of Nitinol using TMA, Physica B, 270 (1999), 289-297.  doi: 10.1016/S0921-4526(99)00186-6.

[71]

J. Wang, Z. Moumni, W. Zhang, Y. Xu and W. Zaki, A 3D finite-strain-based constitutive model for shape memory alloys accounting for thermomechanical coupling and martensite reorientation, Smart Mater. Struct., 26 (2017), 065006. doi: 10.1088/1361-665X/aa6c17.

[72]

W. Zaki and Z. Moumni, A three-dimensional model of the thermomechanical behavior of shape memory alloys, J. Mech. Phys. Solids, 55 (2007), 2455-2490.  doi: 10.1016/j.jmps.2007.03.012.

[73]

X. ZhangP. FengY. HeT. Yu and Q. Sun, Experimental study on rate dependence of macroscopic domain and stress hysteresis in niti shape memory alloy strips, Int. J. Mech. Sci., 52 (2010), 1660-1670.  doi: 10.1016/j.ijmecsci.2010.08.007.

Figure 1.  Dependence of stress on strain for one isothermal simulation and adiabatic simulations at three different strain rates; see text for details
Figure 2.  Evolution of temperature (left vertical axis) and volume fraction of martensite (right vertical axis) with relative progress of the stretching (horizontal axis: 0 = start of stretching, 0.5 = maximum tension, 1 = complete unstretching) at three different strain rates
Figure 3.  Evolution of cumulative sum of three respective contributions to the total heat – latent heat, energy dissipated in rate-independent (RI) processes and in rate-dependent (RD) processes, respectively – integrated over the whole wire at three different strain rates. Relative progress of stretching on the horizontal axis (0 denotes start of stretching, 0.5 maximum tension, 1 complete unstretching). The RI contribution for $ v_2 $ basically coincides with the RI contribution of $ v_1 $
Figure 4.  Comparison of in-situ experimental (left) and computational (right) evolution of spatial distribution of strain during loading at the total-strain rate $ v_{\rm s} = 10^{-3}\, {\rm s}^{-1} $ of a thin NiTi wire
Figure 5.  The same as in Fig. 4 but under loading at the higher speed, $ v_{\rm f} = 10^{-1}\, {\rm s}^{-1} $
Table 1.  Main nomenclature for variables and for the data of the model
$ \varOmega $ a domain in $ \mathbb{R}^d $ (a specimen) $ K $ bulk modulus
$ \varGamma $ the boundary of $ \varOmega $ $ G=G(\xi) $ (a part of) shear modulus
$ u $ displacement $ \mathcal{G}=\mathcal{G}(\xi, e) $ shear strain energy
$ \varepsilon(u) $ total (small) strain $ =\frac12(\nabla u)^\top\!{+}\frac12\nabla u $ $ c_{\rm v} $ heat capacity,
$ e $, $ \pi $ elastic and inelastic strains $ \mathbb{K} $ heat-transfer tensor
$ \xi $ volume fraction of martensite $ \theta_{_{\rm D}} $ prescribed outer temperature
$ \theta $ temperature $ u_{_{\rm D}} $ prescribed boundary displacement
$ s $ entropy $ s_\text{AM} $ entropy of A/M-transformation
$ w $ heat part of the internal energy $ \theta_\mathrm{tr} $ the transformation temperature
$ \eta $ a regularization parameter for approximation $ \tau $ a time step for time discretisation
$ \varOmega $ a domain in $ \mathbb{R}^d $ (a specimen) $ K $ bulk modulus
$ \varGamma $ the boundary of $ \varOmega $ $ G=G(\xi) $ (a part of) shear modulus
$ u $ displacement $ \mathcal{G}=\mathcal{G}(\xi, e) $ shear strain energy
$ \varepsilon(u) $ total (small) strain $ =\frac12(\nabla u)^\top\!{+}\frac12\nabla u $ $ c_{\rm v} $ heat capacity,
$ e $, $ \pi $ elastic and inelastic strains $ \mathbb{K} $ heat-transfer tensor
$ \xi $ volume fraction of martensite $ \theta_{_{\rm D}} $ prescribed outer temperature
$ \theta $ temperature $ u_{_{\rm D}} $ prescribed boundary displacement
$ s $ entropy $ s_\text{AM} $ entropy of A/M-transformation
$ w $ heat part of the internal energy $ \theta_\mathrm{tr} $ the transformation temperature
$ \eta $ a regularization parameter for approximation $ \tau $ a time step for time discretisation
Table 2.  Material parameters used in simulations
Parameter Value Unit Parameter Value Unit
$ l $ $ 25 $ [mm] $ \rho $ $ 0.1 $ [mm]
$ f^{\rm tens} $ $ 0.08 $ [1] $ K $ $ 148 $ [GPa]
$ G_{\rm A} $ $ 25 $ [GPa] $ G_{\rm M} $ $ 12 $ [GPa]
$ c_{\rm v} $ $ 5 $ [MPa/$ ^\circ $C] $ E^{\rm nl} $ $ 80 $ [MPa]
$ E^{\rm int} $ $ 10 $ [MPa] $ s_{\rm AM}^{} $ $ 360 $ [kPa/$ ^\circ $C]
$ \beta $ $ 5 $ [1] $ \mu $ $ 100 $ [kPa$ \, $s]
$ \sigma^{\rm reo}_{\rm tr} $ $ 90 $ [MPa] $ \Sigma^{\rm reo} $ $ -10 $ [kPa/$ ^\circ $C]
$ A_{\rm s} $ $ -15 $ [$ ^\circ $C] $ A_{\rm f} $ $ -5 $ [$ ^\circ $C]
$ M_{\rm s} $ $ -20 $ [$ ^\circ $C] $ M_{\rm f} $ $ -25 $ [$ ^\circ $C]
$ T_0 $ $ -20 $ [$ ^\circ $C] $ \mathbb{K}_{11} $ $ 90 $ [W/(m$ ^\circ $C)]
Parameter Value Unit Parameter Value Unit
$ l $ $ 25 $ [mm] $ \rho $ $ 0.1 $ [mm]
$ f^{\rm tens} $ $ 0.08 $ [1] $ K $ $ 148 $ [GPa]
$ G_{\rm A} $ $ 25 $ [GPa] $ G_{\rm M} $ $ 12 $ [GPa]
$ c_{\rm v} $ $ 5 $ [MPa/$ ^\circ $C] $ E^{\rm nl} $ $ 80 $ [MPa]
$ E^{\rm int} $ $ 10 $ [MPa] $ s_{\rm AM}^{} $ $ 360 $ [kPa/$ ^\circ $C]
$ \beta $ $ 5 $ [1] $ \mu $ $ 100 $ [kPa$ \, $s]
$ \sigma^{\rm reo}_{\rm tr} $ $ 90 $ [MPa] $ \Sigma^{\rm reo} $ $ -10 $ [kPa/$ ^\circ $C]
$ A_{\rm s} $ $ -15 $ [$ ^\circ $C] $ A_{\rm f} $ $ -5 $ [$ ^\circ $C]
$ M_{\rm s} $ $ -20 $ [$ ^\circ $C] $ M_{\rm f} $ $ -25 $ [$ ^\circ $C]
$ T_0 $ $ -20 $ [$ ^\circ $C] $ \mathbb{K}_{11} $ $ 90 $ [W/(m$ ^\circ $C)]
[1]

Tomáš Roubíček. Modelling of thermodynamics of martensitic transformation in shape-memory alloys. Conference Publications, 2007, 2007 (Special) : 892-902. doi: 10.3934/proc.2007.2007.892

[2]

Matthieu Hillairet, Alexei Lozinski, Marcela Szopos. On discretization in time in simulations of particulate flows. Discrete and Continuous Dynamical Systems - B, 2011, 15 (4) : 935-956. doi: 10.3934/dcdsb.2011.15.935

[3]

Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3459-3478. doi: 10.3934/dcdss.2021018

[4]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks and Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[5]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1301-1322. doi: 10.3934/dcdsb.2021091

[6]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6285-6310. doi: 10.3934/dcdsb.2021019

[7]

Carlos J. Garcia-Cervera, Xiao-Ping Wang. Spin-polarized transport: Existence of weak solutions. Discrete and Continuous Dynamical Systems - B, 2007, 7 (1) : 87-100. doi: 10.3934/dcdsb.2007.7.87

[8]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure and Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[9]

Marco Campo, José R. Fernández, Maria Grazia Naso. A dynamic problem involving a coupled suspension bridge system: Numerical analysis and computational experiments. Evolution Equations and Control Theory, 2019, 8 (3) : 489-502. doi: 10.3934/eect.2019024

[10]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[11]

Alain Bensoussan, Miroslav Bulíček, Jens Frehse. Existence and compactness for weak solutions to Bellman systems with critical growth. Discrete and Continuous Dynamical Systems - B, 2012, 17 (6) : 1729-1750. doi: 10.3934/dcdsb.2012.17.1729

[12]

Md. Rabiul Haque, Takayoshi Ogawa, Ryuichi Sato. Existence of weak solutions to a convection–diffusion equation in a uniformly local lebesgue space. Communications on Pure and Applied Analysis, 2020, 19 (2) : 677-697. doi: 10.3934/cpaa.2020031

[13]

Shijin Ding, Boling Guo, Junyu Lin, Ming Zeng. Global existence of weak solutions for Landau-Lifshitz-Maxwell equations. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 867-890. doi: 10.3934/dcds.2007.17.867

[14]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete and Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[15]

M.J. Lopez-Herrero. The existence of weak solutions for a general class of mixed boundary value problems. Conference Publications, 2011, 2011 (Special) : 1015-1024. doi: 10.3934/proc.2011.2011.1015

[16]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[17]

Lukáš Poul. Existence of weak solutions to the Navier-Stokes-Fourier system on Lipschitz domains. Conference Publications, 2007, 2007 (Special) : 834-843. doi: 10.3934/proc.2007.2007.834

[18]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[19]

Shaoyong Lai, Qichang Xie, Yunxi Guo, YongHong Wu. The existence of weak solutions for a generalized Camassa-Holm equation. Communications on Pure and Applied Analysis, 2011, 10 (1) : 45-57. doi: 10.3934/cpaa.2011.10.45

[20]

Carlos J. García-Cervera, Xiao-Ping Wang. A note on 'Spin-polarized transport: Existence of weak solutions'. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2761-2763. doi: 10.3934/dcdsb.2015.20.2761

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (353)
  • HTML views (610)
  • Cited by (0)

[Back to Top]