• Previous Article
    $ W^{2, p} $-regularity for asymptotically regular fully nonlinear elliptic and parabolic equations with oblique boundary values
  • DCDS-S Home
  • This Issue
  • Next Article
    An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation
doi: 10.3934/dcdss.2020460

Dimension reduction of thermistor models for large-area organic light-emitting diodes

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstraße 39, 10117 Berlin, Germany

* Corresponding author: Matthias Liero

Received  April 2020 Revised  September 2020 Early access  November 2020

An effective system of partial differential equations describing the heat and current flow through a thin organic light-emitting diode (OLED) mounted on a glass substrate is rigorously derived from a recently introduced fully three-dimensional $ p(x) $-Laplace thermistor model. The OLED consists of several thin layers that scale differently with respect to the multiscale parameter $ \varepsilon>0 $, which is the ratio between the total thickness and the lateral extent of the OLED. Starting point of the derivation is a rescaled formulation of the current-flow equation in the OLED for the driving potential and the heat equation in OLED and glass substrate with Joule heat term concentrated in the OLED. Assuming physically motivated scalings in the electrical flux functions, uniform a priori bounds are derived for the solutions of the three-dimensional system which facilitates the extraction of converging subsequences with limits that are identified as solutions of a dimension reduced system. In the latter, the effective current-flow equation is given by two semilinear equations in the two-dimensional cross-sections of the electrodes and algebraic equations for the continuity of the electrical fluxes through the organic layers. The effective heat equation is formulated only in the glass substrate with Joule heat term on the part of the boundary where the OLED is mounted.

Citation: Annegret Glitzky, Matthias Liero, Grigor Nika. Dimension reduction of thermistor models for large-area organic light-emitting diodes. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020460
References:
[1]

E. AcerbiG. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, J. Elasticity, 25 (1991), 137-148.  doi: 10.1007/BF00042462.  Google Scholar

[2]

M. BulíčekA. Glitzky and M. Liero, Systems describing electrothermal effects with $p(x)$-Laplace like structure for discontinuous variable exponents, SIAM J. Math. Analysis, 48 (2016), 3496-3514.  doi: 10.1137/16M1062211.  Google Scholar

[3]

M. BulíčekA. Glitzky and M. Liero, Thermistor systems of $p(x)$-Laplace-type with discontinuous exponents via entropy solutions, Discr. Cont. Dynam. Systems Ser. S, 10 (2017), 697-713.  doi: 10.3934/dcdss.2017035.  Google Scholar

[4]

P. G. Ciarlet and P. Destuynder, A justification of a nonlinear model in plate theory, Computer Methods in Applied Mechanics and Engineering, 17/18 (1979), 227-258.  doi: 10.1016/0045-7825(79)90089-6.  Google Scholar

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Rủžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[6]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$, Journal of Mathematical Analysis and Applications, 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[7]

A. FischerT. KopruckiK. GärtnerM. L. TietzeJ. BrücknerB. LüssemK. LeoA. Glitzky and R. Scholz, Feel the heat: Nonlinear electrothermal feedback in organic LEDs, Adv. Funct. Mater., 24 (2014), 3367-3374.  doi: 10.1002/adfm.201303066.  Google Scholar

[8]

A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, K. Gärtner and A. Glitzky, Self-heating, bistability and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601. doi: 10.1103/PhysRevLett.110.126601.  Google Scholar

[9]

A. Fischer, M. Pfalz, K. Vandewal, S. Lenk, M. Liero, A. Glitzky and S. Reineke, Full electrothermal OLED model including nonlinear self-heating effects, Phys. Rev. Applied, 10 (2018), 014023. doi: 10.1103/PhysRevApplied.10.014023.  Google Scholar

[10]

T. Frenzel and M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, Discr. Cont. Dynam. Systems Ser. S, (2020), Online first doi: 10.3934/dcdss.2020345.  Google Scholar

[11]

G. FrieseckeR. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Archive for Rational Mechanics and Analysis, 180 (2006), 183-236.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[12]

A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky and S. Reineke, Experimental proof of {J}oule heating-induced switched-back regions in OLEDs, Light: Science & Applications, 9 (2020), 5. doi: 10.1038/s41377-019-0236-9.  Google Scholar

[13]

P. KordtJ. J. M. van der HolstM. Al HelwiW. KowalskyF. MayA. BadinskiC. Lennartz and D. Andrienko, Modeling of organic light emitting diodes: From molecular to device properties, Adv. Func. Mater., 25 (2015), 1955-1971.  doi: 10.1002/adfm.201403004.  Google Scholar

[14]

O. Kováčik and J. Rákosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Mathematical Journal, 41 (1991), 592-618.   Google Scholar

[15]

M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer and S. Reineke, 3{D} electrothermal simulations of organic LEDs showing negative differential resistance, in Opt. Quantum Electron., 49 (2017), 330/1–330/8. doi: 10.1109/NUSOD.2017.8010013.  Google Scholar

[16]

M. LieroT. KopruckiA. FischerR. Scholz and A. Glitzky, $p$-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys., 66 (2015), 2957-2977.  doi: 10.1007/s00033-015-0560-8.  Google Scholar

[17]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM Journal on Mathematical Analysis, 39 (2007), 687-720.  doi: 10.1137/060665452.  Google Scholar

[18]

K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets, Zeitschrift für Angewandte Mathematik und Physik, 61 (2010), 603–626. doi: 10.1007/s00033-009-0043-x.  Google Scholar

show all references

References:
[1]

E. AcerbiG. Buttazzo and D. Percivale, A variational definition of the strain energy for an elastic string, J. Elasticity, 25 (1991), 137-148.  doi: 10.1007/BF00042462.  Google Scholar

[2]

M. BulíčekA. Glitzky and M. Liero, Systems describing electrothermal effects with $p(x)$-Laplace like structure for discontinuous variable exponents, SIAM J. Math. Analysis, 48 (2016), 3496-3514.  doi: 10.1137/16M1062211.  Google Scholar

[3]

M. BulíčekA. Glitzky and M. Liero, Thermistor systems of $p(x)$-Laplace-type with discontinuous exponents via entropy solutions, Discr. Cont. Dynam. Systems Ser. S, 10 (2017), 697-713.  doi: 10.3934/dcdss.2017035.  Google Scholar

[4]

P. G. Ciarlet and P. Destuynder, A justification of a nonlinear model in plate theory, Computer Methods in Applied Mechanics and Engineering, 17/18 (1979), 227-258.  doi: 10.1016/0045-7825(79)90089-6.  Google Scholar

[5]

L. Diening, P. Harjulehto, P. Hästö and M. Rủžička, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8.  Google Scholar

[6]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{k,p(x)}(\Omega)$, Journal of Mathematical Analysis and Applications, 263 (2001), 424-446.  doi: 10.1006/jmaa.2000.7617.  Google Scholar

[7]

A. FischerT. KopruckiK. GärtnerM. L. TietzeJ. BrücknerB. LüssemK. LeoA. Glitzky and R. Scholz, Feel the heat: Nonlinear electrothermal feedback in organic LEDs, Adv. Funct. Mater., 24 (2014), 3367-3374.  doi: 10.1002/adfm.201303066.  Google Scholar

[8]

A. Fischer, P. Pahner, B. Lüssem, K. Leo, R. Scholz, T. Koprucki, K. Gärtner and A. Glitzky, Self-heating, bistability and thermal switching in organic semiconductors, Phys. Rev. Lett., 110 (2013), 126601. doi: 10.1103/PhysRevLett.110.126601.  Google Scholar

[9]

A. Fischer, M. Pfalz, K. Vandewal, S. Lenk, M. Liero, A. Glitzky and S. Reineke, Full electrothermal OLED model including nonlinear self-heating effects, Phys. Rev. Applied, 10 (2018), 014023. doi: 10.1103/PhysRevApplied.10.014023.  Google Scholar

[10]

T. Frenzel and M. Liero, Effective diffusion in thin structures via generalized gradient systems and EDP-convergence, Discr. Cont. Dynam. Systems Ser. S, (2020), Online first doi: 10.3934/dcdss.2020345.  Google Scholar

[11]

G. FrieseckeR. D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Archive for Rational Mechanics and Analysis, 180 (2006), 183-236.  doi: 10.1007/s00205-005-0400-7.  Google Scholar

[12]

A. Kirch, A. Fischer, M. Liero, J. Fuhrmann, A. Glitzky and S. Reineke, Experimental proof of {J}oule heating-induced switched-back regions in OLEDs, Light: Science & Applications, 9 (2020), 5. doi: 10.1038/s41377-019-0236-9.  Google Scholar

[13]

P. KordtJ. J. M. van der HolstM. Al HelwiW. KowalskyF. MayA. BadinskiC. Lennartz and D. Andrienko, Modeling of organic light emitting diodes: From molecular to device properties, Adv. Func. Mater., 25 (2015), 1955-1971.  doi: 10.1002/adfm.201403004.  Google Scholar

[14]

O. Kováčik and J. Rákosnik, On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czechoslovak Mathematical Journal, 41 (1991), 592-618.   Google Scholar

[15]

M. Liero, J. Fuhrmann, A. Glitzky, T. Koprucki, A. Fischer and S. Reineke, 3{D} electrothermal simulations of organic LEDs showing negative differential resistance, in Opt. Quantum Electron., 49 (2017), 330/1–330/8. doi: 10.1109/NUSOD.2017.8010013.  Google Scholar

[16]

M. LieroT. KopruckiA. FischerR. Scholz and A. Glitzky, $p$-Laplace thermistor modeling of electrothermal feedback in organic semiconductor devices, Z. Angew. Math. Phys., 66 (2015), 2957-2977.  doi: 10.1007/s00033-015-0560-8.  Google Scholar

[17]

M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM Journal on Mathematical Analysis, 39 (2007), 687-720.  doi: 10.1137/060665452.  Google Scholar

[18]

K. Schmidt and S. Tordeux, Asymptotic modelling of conductive thin sheets, Zeitschrift für Angewandte Mathematik und Physik, 61 (2010), 603–626. doi: 10.1007/s00033-009-0043-x.  Google Scholar

Figure 1.  Sketch of the domain $ \Omega_ \varepsilon $ consisting of the glass substrate $ \Omega^\mathrm{sub} $ and the OLED $ \Omega_ \varepsilon^\mathrm{oled} $. The latter consists of $ N $ layers (with $ N = 5 $ in the figure). The bottom and top layer $ \Omega_ \varepsilon^1 $ and $ \Omega_ \varepsilon^N $ describe the electrodes with Dirichlet boundaries $ \Gamma_ \varepsilon^- $ and $ \Gamma_ \varepsilon^+ $ (green) for the potential where the voltage is applied. In the effective limit, the current-flow equation reduces to coupled equations on the two-dimensional domain $ \Gamma_0 $ (red) and the heat equation is solved only in $ \Omega^\mathrm{sub} $ with an additional boundary source term on $ \Gamma_0 $
[1]

Andrey Shishkov. Waiting time of propagation and the backward motion of interfaces in thin-film flow theory. Conference Publications, 2007, 2007 (Special) : 938-945. doi: 10.3934/proc.2007.2007.938

[2]

Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803

[3]

Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 335-399. doi: 10.3934/dcdsb.2019186

[4]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[5]

Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N $. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449

[6]

Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135

[7]

Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks & Heterogeneous Media, 2014, 9 (4) : 709-737. doi: 10.3934/nhm.2014.9.709

[8]

Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451

[9]

Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69

[10]

Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501

[11]

Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062

[12]

Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200

[13]

Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151

[14]

Marina Chugunova, Roman M. Taranets. New dissipated energy for the unstable thin film equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 613-624. doi: 10.3934/cpaa.2011.10.613

[15]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[16]

Richard S. Laugesen. New dissipated energies for the thin fluid film equation. Communications on Pure & Applied Analysis, 2005, 4 (3) : 613-634. doi: 10.3934/cpaa.2005.4.613

[17]

Changchun Liu, Jingxue Yin, Juan Zhou. Existence of weak solutions for a generalized thin film equation. Communications on Pure & Applied Analysis, 2007, 6 (2) : 465-480. doi: 10.3934/cpaa.2007.6.465

[18]

Jian-Guo Liu, Jinhuan Wang. Global existence for a thin film equation with subcritical mass. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1461-1492. doi: 10.3934/dcdsb.2017070

[19]

Cheng Wang, Xiaoming Wang, Steven M. Wise. Unconditionally stable schemes for equations of thin film epitaxy. Discrete & Continuous Dynamical Systems, 2010, 28 (1) : 405-423. doi: 10.3934/dcds.2010.28.405

[20]

Micol Amar, Roberto Gianni. Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1739-1756. doi: 10.3934/dcdsb.2018078

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]