doi: 10.3934/dcdss.2020464

An age group model for the study of a population of trees

1. 

LMR, UMR 9008, U.F.R. Sciences Exactes et Naturelles, BP 1039, 51687 Reims Cedex 02, France

2. 

HABITER, EA 2076, U.F.R. Lettres et Sciences Humaines, BP 30, 51571 Reims Cedex, France

 

Received  June 2020 Revised  October 2020 Published  November 2020

In this paper, we derive a simple model for the description of an ecological system including several subgroups with distinct ages, in order to analyze the influence of various phenomena on temporal evolution of the considered species. Our aim is to address the question of resilience of the global system, defined as its ability to stabilize itself to equilibrium, when being perturbed by exterior fluctuations. It is shown that a under a critical condition involving growth rate and mortality rate of each subgroup, extinction of all species may occur.

Citation: Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020464
References:
[1]

O. Y. Achiepo, Les bases fondamentales de la résilométrie, une science de modélisation de la souffrance & Les dimensions de la mesure de la résilience, Cafés de Résiliences (2015). Google Scholar

[2]

W. N. Adger, Vulnerability, Global Environmental Change, 16 (2006), 268-281.  doi: 10.1016/j.gloenvcha.2006.02.006.  Google Scholar

[3]

P. Auger, C. Lett and J.-C. Poggiale, Modélisation Mathématique en Ecologie, Sciences Sup, SMAI/Dunod, 2015. Google Scholar

[4]

B. E. Beisner, D. T. Haydon and K. Cuddington, Alternative stable states in ecology, Front. Ecol. Environ., 1, (2003), 376–382.http://dx.doi.org/10.1890/1540-9295(2003)001[0376:ASSIE]2.0.CO;2 Google Scholar

[5]

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New-York, 2001. doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[6]

P. Buchheit, P. d'Aquino and O. Ducourtieux, Cadres théoriques mobilisant les concepts de résilience et de vulnérabilité, VertigO, 16 (2016). doi: 10.4000/vertigo.17131.  Google Scholar

[7]

G. Cantin and N. Verdière, Mathematical modeling of complex forest ecosystems: Impacts of deforestation, (2020). [hal-02496187]. Google Scholar

[8]

S. CarpenterB. WalkerJ. M. Anderies and N. Abel, From metaphor to measurement: Resilience of what to what?, Ecosystems, 4 (2001), 765-781.  doi: 10.1007/s10021-001-0045-9.  Google Scholar

[9]

B. Courbaud, Intérêt des modèles pour l'ingénierie écologique: Exemples à partir du modèle de dynamique des peuplements forestiers SAMSARA, in Ingénieries - EAT, Ingénierie écologique, Special issue (2004), 49–56. Google Scholar

[10]

V. Fabre, Réponse Démographique des Néandertaliens Face Aux Pressions Environnementales du Stade Isotopique 3 : Approche Par Modélisation Écologique, Ph. D Thesis, Marseille University, France, 2011. Google Scholar

[11]

V. Fabre and J.-C. Poggiale, Modeling the resilience of past populations: Myth or real 6 perspective? Application to Neanderthals demise, personal publication (2016). Google Scholar

[12]

C. Folke, Resilience: The emergence of a perspective for social-ecological systems analysis, Global Environmental Change, 16 (2006), 253-267.  doi: 10.1016/j.gloenvcha.2006.04.002.  Google Scholar

[13]

C. Folke, Social-ecological systems and adaptive governance of the commons, Ecological Research, 22 (2007), 14-15.  doi: 10.1007/s11284-006-0074-0.  Google Scholar

[14]

C. Folke, S. R. Carpenter, B. Walker, M. Scheffer, T. Chapin and J. Rockström, Resilience thinking: Integrating resilience, adaptability and transformability, Ecology and Society, 15 (2010), 20. doi: 10.5751/ES-03610-150420.  Google Scholar

[15]

E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations: Non-Stiff Problems, Springer Series in Computational Mathematics, Springer-Verlag, 2nd Ed., 1993.  Google Scholar

[16]

C. S. Holling, Resilience and stability of ecological systems, Annual Rev. of Ecology and Systematics, 4 (1973), 1-23.  doi: 10.1146/annurev.es.04.110173.000245.  Google Scholar

[17]

C. S. Holling, The resilience of terrestrial ecosystems: Local surprise and global change, in Sustainable Development of the Biosphere, Clark W. C., Munn R. E. Eds, Cambridge University Press, London (1986), 292–317. Google Scholar

[18]

C. S. Holling, Understanding the complexity of economic, ecological, and social systems, Ecosystems, 4 (2001), 390-405.  doi: 10.1007/s10021-001-0101-5.  Google Scholar

[19]

A. Hurwitz, Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen T eilen besitzt, Math. Annalen, 46, (1895), 273–284. doi: 10.1007/BF01446812.  Google Scholar

[20]

S. A. Levin and J. Lubchenco, Resilience, Robustness, and Marine Ecosystem-Based Management, BioScience, 58, (2008), 27–32. doi: 10.1641/B580107.  Google Scholar

[21]

J. LiuT. DietzS. R. CarpenterM. AlbertiC. FolkeE. MoranA. N. PellP. DeadmanT. KratzJ. LubchencoE. OstromZ. OuyangW. ProvencherC. L. RedmanS. H. Schneider and W. W. Taylor, Complexity of coupled human and natural systems, Science, 317 (2007), 1513-1516.  doi: 10.1126/science.1144004.  Google Scholar

[22]

S. Martin, La résilience Dans Les Modèles de Systèmes Écologiques et Sociaux, Ph. D Thesis, ENS Cachan, France, 2005. Google Scholar

[23]

K. Meyer, A mathematical review of resiliene in ecology, Natural Resource Modeling, 29 (2016), 339-352.  doi: 10.1111/nrm.12097.  Google Scholar

[24]

F. MillerH. OsbahrE. BoydF. ThomallaS. BharwaniG. ZiervogelB. WalkerJ. BirkmannS. Van Der LeeuwJ. RockströmJ. HinkelT. DowningC. Folke and D. Nelson, Resilience and Vulnerability: Complementary or Conflicting Concepts?, Ecology and Society, 15 (2010), 1-25.  doi: 10.5751/ES-03378-150311.  Google Scholar

[25]

N. Oreskes, The role of quantitative models in science, in Models in Ecosystem Science, Canham, Cole and Lauenroth Eds, W.-K, Princeton University Press, Princeton, (2003), 13–31. Google Scholar

[26]

E. Ostrom, A general framework for analyzing sustainability of social-ecological systems, Science, 325 (2009), 419-422.  doi: 10.1126/science.1172133.  Google Scholar

[27]

S. L. Pimm, The complexity and stability of ecosystems, Nature, 307 (1984), 321-326.  doi: 10.1038/307321a0.  Google Scholar

[28]

C. L. RedmanJ. M. Grove and L. H. Kuby, Integrating social science into the Long-Term Ecological Research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change, Ecosystems, 7 (2004), 161-171.  doi: 10.1007/s10021-003-0215-z.  Google Scholar

[29]

C. RougeJ. D. Mathias and G. Deffuant, Extending the viability theory framework of resilience to uncertain dynamics, and application to lake eutrophication, Ecol. Indic., 29 (2013), 420-433.  doi: 10.1016/j.ecolind.2012.12.032.  Google Scholar

[30]

E. SpechtT. Redemann and N. Lorenz, Simplified mathematical model for calculating global warming through anthropogenic CO$_2$, International Journal of Thermal Sciences, 102 (2016), 1-8.   Google Scholar

[31]

B. L. TurnerR. E. KaspersonP. A. MatsonJ. J. McCarthyR. W. CorellL. ChristensenN. EckleyJ. X. KaspersonA. LuersM. L. MartelloC. PolskyA. Pulsipher and A. Schiller, A framework for vulnerability analysis in sustainability science, PNAS, 100 (2003), 8074-8079.  doi: 10.1073/pnas.1231335100.  Google Scholar

[32]

P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance mathématique et physique, 10 (1838), 113-121.   Google Scholar

[33]

V. Volterra, Variations and Fluctuations of the Number of Individuals in Animal Species Living Together, ICES Journal of Marine Science, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.  Google Scholar

[34]

B. Walker, C. S. Holling, S. R. Carpenter and A. Kinzig, Resilience, adaptability and transformability in social-ecological systems, Ecol. Soc., 9 (2004), 5. doi: 10.5751/ES-00650-090205.  Google Scholar

show all references

References:
[1]

O. Y. Achiepo, Les bases fondamentales de la résilométrie, une science de modélisation de la souffrance & Les dimensions de la mesure de la résilience, Cafés de Résiliences (2015). Google Scholar

[2]

W. N. Adger, Vulnerability, Global Environmental Change, 16 (2006), 268-281.  doi: 10.1016/j.gloenvcha.2006.02.006.  Google Scholar

[3]

P. Auger, C. Lett and J.-C. Poggiale, Modélisation Mathématique en Ecologie, Sciences Sup, SMAI/Dunod, 2015. Google Scholar

[4]

B. E. Beisner, D. T. Haydon and K. Cuddington, Alternative stable states in ecology, Front. Ecol. Environ., 1, (2003), 376–382.http://dx.doi.org/10.1890/1540-9295(2003)001[0376:ASSIE]2.0.CO;2 Google Scholar

[5]

F. Brauer and C. Castillo-Chávez, Mathematical Models in Population Biology and Epidemiology, Springer-Verlag, New-York, 2001. doi: 10.1007/978-1-4757-3516-1.  Google Scholar

[6]

P. Buchheit, P. d'Aquino and O. Ducourtieux, Cadres théoriques mobilisant les concepts de résilience et de vulnérabilité, VertigO, 16 (2016). doi: 10.4000/vertigo.17131.  Google Scholar

[7]

G. Cantin and N. Verdière, Mathematical modeling of complex forest ecosystems: Impacts of deforestation, (2020). [hal-02496187]. Google Scholar

[8]

S. CarpenterB. WalkerJ. M. Anderies and N. Abel, From metaphor to measurement: Resilience of what to what?, Ecosystems, 4 (2001), 765-781.  doi: 10.1007/s10021-001-0045-9.  Google Scholar

[9]

B. Courbaud, Intérêt des modèles pour l'ingénierie écologique: Exemples à partir du modèle de dynamique des peuplements forestiers SAMSARA, in Ingénieries - EAT, Ingénierie écologique, Special issue (2004), 49–56. Google Scholar

[10]

V. Fabre, Réponse Démographique des Néandertaliens Face Aux Pressions Environnementales du Stade Isotopique 3 : Approche Par Modélisation Écologique, Ph. D Thesis, Marseille University, France, 2011. Google Scholar

[11]

V. Fabre and J.-C. Poggiale, Modeling the resilience of past populations: Myth or real 6 perspective? Application to Neanderthals demise, personal publication (2016). Google Scholar

[12]

C. Folke, Resilience: The emergence of a perspective for social-ecological systems analysis, Global Environmental Change, 16 (2006), 253-267.  doi: 10.1016/j.gloenvcha.2006.04.002.  Google Scholar

[13]

C. Folke, Social-ecological systems and adaptive governance of the commons, Ecological Research, 22 (2007), 14-15.  doi: 10.1007/s11284-006-0074-0.  Google Scholar

[14]

C. Folke, S. R. Carpenter, B. Walker, M. Scheffer, T. Chapin and J. Rockström, Resilience thinking: Integrating resilience, adaptability and transformability, Ecology and Society, 15 (2010), 20. doi: 10.5751/ES-03610-150420.  Google Scholar

[15]

E. Hairer, S. P. Norsett and G. Wanner, Solving Ordinary Differential Equations: Non-Stiff Problems, Springer Series in Computational Mathematics, Springer-Verlag, 2nd Ed., 1993.  Google Scholar

[16]

C. S. Holling, Resilience and stability of ecological systems, Annual Rev. of Ecology and Systematics, 4 (1973), 1-23.  doi: 10.1146/annurev.es.04.110173.000245.  Google Scholar

[17]

C. S. Holling, The resilience of terrestrial ecosystems: Local surprise and global change, in Sustainable Development of the Biosphere, Clark W. C., Munn R. E. Eds, Cambridge University Press, London (1986), 292–317. Google Scholar

[18]

C. S. Holling, Understanding the complexity of economic, ecological, and social systems, Ecosystems, 4 (2001), 390-405.  doi: 10.1007/s10021-001-0101-5.  Google Scholar

[19]

A. Hurwitz, Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen T eilen besitzt, Math. Annalen, 46, (1895), 273–284. doi: 10.1007/BF01446812.  Google Scholar

[20]

S. A. Levin and J. Lubchenco, Resilience, Robustness, and Marine Ecosystem-Based Management, BioScience, 58, (2008), 27–32. doi: 10.1641/B580107.  Google Scholar

[21]

J. LiuT. DietzS. R. CarpenterM. AlbertiC. FolkeE. MoranA. N. PellP. DeadmanT. KratzJ. LubchencoE. OstromZ. OuyangW. ProvencherC. L. RedmanS. H. Schneider and W. W. Taylor, Complexity of coupled human and natural systems, Science, 317 (2007), 1513-1516.  doi: 10.1126/science.1144004.  Google Scholar

[22]

S. Martin, La résilience Dans Les Modèles de Systèmes Écologiques et Sociaux, Ph. D Thesis, ENS Cachan, France, 2005. Google Scholar

[23]

K. Meyer, A mathematical review of resiliene in ecology, Natural Resource Modeling, 29 (2016), 339-352.  doi: 10.1111/nrm.12097.  Google Scholar

[24]

F. MillerH. OsbahrE. BoydF. ThomallaS. BharwaniG. ZiervogelB. WalkerJ. BirkmannS. Van Der LeeuwJ. RockströmJ. HinkelT. DowningC. Folke and D. Nelson, Resilience and Vulnerability: Complementary or Conflicting Concepts?, Ecology and Society, 15 (2010), 1-25.  doi: 10.5751/ES-03378-150311.  Google Scholar

[25]

N. Oreskes, The role of quantitative models in science, in Models in Ecosystem Science, Canham, Cole and Lauenroth Eds, W.-K, Princeton University Press, Princeton, (2003), 13–31. Google Scholar

[26]

E. Ostrom, A general framework for analyzing sustainability of social-ecological systems, Science, 325 (2009), 419-422.  doi: 10.1126/science.1172133.  Google Scholar

[27]

S. L. Pimm, The complexity and stability of ecosystems, Nature, 307 (1984), 321-326.  doi: 10.1038/307321a0.  Google Scholar

[28]

C. L. RedmanJ. M. Grove and L. H. Kuby, Integrating social science into the Long-Term Ecological Research (LTER) network: Social dimensions of ecological change and ecological dimensions of social change, Ecosystems, 7 (2004), 161-171.  doi: 10.1007/s10021-003-0215-z.  Google Scholar

[29]

C. RougeJ. D. Mathias and G. Deffuant, Extending the viability theory framework of resilience to uncertain dynamics, and application to lake eutrophication, Ecol. Indic., 29 (2013), 420-433.  doi: 10.1016/j.ecolind.2012.12.032.  Google Scholar

[30]

E. SpechtT. Redemann and N. Lorenz, Simplified mathematical model for calculating global warming through anthropogenic CO$_2$, International Journal of Thermal Sciences, 102 (2016), 1-8.   Google Scholar

[31]

B. L. TurnerR. E. KaspersonP. A. MatsonJ. J. McCarthyR. W. CorellL. ChristensenN. EckleyJ. X. KaspersonA. LuersM. L. MartelloC. PolskyA. Pulsipher and A. Schiller, A framework for vulnerability analysis in sustainability science, PNAS, 100 (2003), 8074-8079.  doi: 10.1073/pnas.1231335100.  Google Scholar

[32]

P.-F. Verhulst, Notice sur la loi que la population suit dans son accroissement, Correspondance mathématique et physique, 10 (1838), 113-121.   Google Scholar

[33]

V. Volterra, Variations and Fluctuations of the Number of Individuals in Animal Species Living Together, ICES Journal of Marine Science, 3 (1928), 3-51.  doi: 10.1093/icesjms/3.1.3.  Google Scholar

[34]

B. Walker, C. S. Holling, S. R. Carpenter and A. Kinzig, Resilience, adaptability and transformability in social-ecological systems, Ecol. Soc., 9 (2004), 5. doi: 10.5751/ES-00650-090205.  Google Scholar

Figure 1.  Time evolution of $R$ in three different cases: (a) $g = 1$; (b) $g = 0.2$ between $t = 3$ and $t = 10$ and $g = 1$ elsewhere, (c) $g = 1$ if $t\le 3$ and $g = 0.2$ elsewhere
Figure 2.  Time evolution of $R$ in two different cases: (a) $m = 1$; (b) $m = 1.2$ between $t = 20$ and $t = 40$ and $m = 1$ elsewhere. The asymptotic state $R_{*, 2}$ is not perturbed by mortality fluctuation
Figure 3.  Time evolution of $R$ in two different cases: (a) $m = 1.2$ for $t\ge 20$; (b) $m = 2$ for $t\ge 20$. In the first case, the asymptotic state $R_{*, 2}$ is perturbed, in the second case, extinction occurs at large times
Figure 4.  Time evolution of $(Y, I, O)$ for the two stable cases $g_Y = 3$, $g_I = 1$, $g_O = 0.5$, $m_Y = 1$, $m_I = 0.8$, $m_O = 0.2$ (left) and $g_Y = 1$, $g_I = 1$, $g_O = 0.6$, $m_Y = 1.5$, $m_I = 1$, $m_O = 0.2$ (right) ($Y$: black, $I$: blue, $O$: red)
Figure 5.  Time evolution of $(Y, I, O)$ when perturbing mortality of intermediate trees : $m_{I, 2} = 1.4$ (left) and $m_{I, 2} = 2$ (right). In the first case, the system drives itself into another stable nontrivial equilibrium; in the second case, the total population extincts ($Y$: black, $I$: blue, $O$: red)
[1]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020399

[2]

The Editors. The 2019 Michael Brin Prize in Dynamical Systems. Journal of Modern Dynamics, 2020, 16: 349-350. doi: 10.3934/jmd.2020013

[3]

Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021004

[4]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[5]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[6]

Alessandro Fonda, Rodica Toader. A dynamical approach to lower and upper solutions for planar systems "To the memory of Massimo Tarallo". Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021012

[7]

Stefan Siegmund, Petr Stehlík. Time scale-induced asynchronous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1011-1029. doi: 10.3934/dcdsb.2020151

[8]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[9]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[10]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[11]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[12]

Zsolt Saffer, Miklós Telek, Gábor Horváth. Analysis of Markov-modulated fluid polling systems with gated discipline. Journal of Industrial & Management Optimization, 2021, 17 (2) : 575-599. doi: 10.3934/jimo.2019124

[13]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021  doi: 10.3934/nhm.2021003

[14]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[15]

Jonathan J. Wylie, Robert M. Miura, Huaxiong Huang. Systems of coupled diffusion equations with degenerate nonlinear source terms: Linear stability and traveling waves. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 561-569. doi: 10.3934/dcds.2009.23.561

[16]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[17]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[18]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[19]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[20]

Skyler Simmons. Stability of Broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (27)
  • HTML views (78)
  • Cited by (0)

Other articles
by authors

[Back to Top]