August  2021, 14(8): 3017-3025. doi: 10.3934/dcdss.2020465

On the convergence to equilibria of a sequence defined by an implicit scheme

1. 

Laboratoire M2N, EA7340, CNAM, 292 rue Saint-Martin, 75003, Paris, France

2. 

Université de Carthage, Institut Préparatoire aux Etudes Scientifiques et Techniques, B.P. 51 2070 La Marsa, Tunisie

3. 

Laboratoire équations aux dérivées partielles, Faculté des sciences de Tunis, Université Tunis El Manar, Campus universitaire El-Manar, 2092 El-Manar, Tunisie

* Corresponding author: Thierry Horsin

Dedicated to the memory of Ezzeddine ZAHROUNI
Both authors wishes to thank Morgan Pierre for fruitful comments. They are also grateful to the referees for their very useful comments. The first author wishes to thanks the organizers of ICAAM 2019 in Hammamet, Tunisia, where this work was initiated. The second author wishes to thanks CNAM, France where this work was partially completed.

Received  September 2020 Revised  October 2020 Published  August 2021 Early access  November 2020

We present numerical implicit schemes based on a geometric approach of the study of the convergence of solutions of gradient-like systems given in [3]. Depending on the globality of the induced metric, we can prove the convergence of these algorithms.

Citation: Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3017-3025. doi: 10.3934/dcdss.2020465
References:
[1]

P.-A. AbsilR. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.  doi: 10.1137/040605266.

[2]

H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), 5-16.  doi: 10.1007/s10107-007-0133-5.

[3]

T. BartaR. Chill and E. Fašangová, Every ordinary differential equation with a strict Lyapunov function is a gradient system, Monatsh. Math., 166 (2012), 57-72.  doi: 10.1007/s00605-011-0322-4.

[4]

J. BolteA. DaniilidisO. Ley and L. Mazet, Characterizations of Lojasiewicz inequalities and applications, Trans. Amer. Math. Soc, 362 (6) (2010), 3319-3363.  doi: 10.1090/S0002-9947-09-05048-X.

[5]

R. ChillA. Haraux and M. A. Jendoubi, Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations, Anal. Appl., 7 (2009), 351-372.  doi: 10.1142/S0219530509001438.

[6]

A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems. Classical Methods and Recent Advances, SpringerBriefs in Mathematics. Cham : Springer. 2015 doi: 10.1007/978-3-319-23407-6.

[7]

J. X. Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, AMS, 2006.

[8]

M. A. Jendoubi, Convergence des solutions globales et bornées de quelques problèmes d'évolution avec nonlinéarité analytique, in Progress in Partial Differential Equations. Papers from the 3rd European conference on elliptic and parabolic problems, Pont-à-Mousson, France, June 1997. Vol. 1. (eds Amann, H. (ed.) et al.) Harlow: Longman. Pitman Res. Notes Math. Ser., 383 (1998), 181–190.

[9]

W. Klingenberg, Riemannian Geometry, De Gruyter Studies in Mathematics, 1, Berlin: Walter de Gruyter & Co. 1982.

[10]

S. Lojasiewicz, Ensembles semi-analytiques, Preprint, I.H.E.S, Bures-sur-Yvette, 1965.

[11]

S. Lojasiewicz, Une proprièté topologique des sous ensembles analytiques réels, in Les Équations aux Dérivées Partielles, Colloques internationaux du C.N.R.S, 117. 1963.

[12]

B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Comm. Pure and Appl. Anal., 9 (2010), 665-702.  doi: 10.3934/cpaa.2010.9.685.

[13]

B. Merlet and T. H. Nguyen, Convergence to equilibrium for the backward euler scheme and applicationsconvergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds, Differential Integral Equations 26 (2013), 571–602. https://projecteuclid.org/euclid.die/1363266079

[14]

J. Nash, The imbedding problem for Riemannian manifolds, Annals of Maths, 63 (1956), 20-63.  doi: 10.2307/1969989.

[15]

J. H. C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math., Oxford 3 (1932), 33–42, . doi: 10.1093/qmath/os-3.1.33.

show all references

References:
[1]

P.-A. AbsilR. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost functions, SIAM J. Optim., 16 (2005), 531-547.  doi: 10.1137/040605266.

[2]

H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features, Math. Program., 116 (2009), 5-16.  doi: 10.1007/s10107-007-0133-5.

[3]

T. BartaR. Chill and E. Fašangová, Every ordinary differential equation with a strict Lyapunov function is a gradient system, Monatsh. Math., 166 (2012), 57-72.  doi: 10.1007/s00605-011-0322-4.

[4]

J. BolteA. DaniilidisO. Ley and L. Mazet, Characterizations of Lojasiewicz inequalities and applications, Trans. Amer. Math. Soc, 362 (6) (2010), 3319-3363.  doi: 10.1090/S0002-9947-09-05048-X.

[5]

R. ChillA. Haraux and M. A. Jendoubi, Applications of the Lojasiewicz-Simon gradient inequality to gradient-like evolution equations, Anal. Appl., 7 (2009), 351-372.  doi: 10.1142/S0219530509001438.

[6]

A. Haraux and M. A. Jendoubi, The Convergence Problem for Dissipative Autonomous Systems. Classical Methods and Recent Advances, SpringerBriefs in Mathematics. Cham : Springer. 2015 doi: 10.1007/978-3-319-23407-6.

[7]

J. X. Hong, Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, AMS, 2006.

[8]

M. A. Jendoubi, Convergence des solutions globales et bornées de quelques problèmes d'évolution avec nonlinéarité analytique, in Progress in Partial Differential Equations. Papers from the 3rd European conference on elliptic and parabolic problems, Pont-à-Mousson, France, June 1997. Vol. 1. (eds Amann, H. (ed.) et al.) Harlow: Longman. Pitman Res. Notes Math. Ser., 383 (1998), 181–190.

[9]

W. Klingenberg, Riemannian Geometry, De Gruyter Studies in Mathematics, 1, Berlin: Walter de Gruyter & Co. 1982.

[10]

S. Lojasiewicz, Ensembles semi-analytiques, Preprint, I.H.E.S, Bures-sur-Yvette, 1965.

[11]

S. Lojasiewicz, Une proprièté topologique des sous ensembles analytiques réels, in Les Équations aux Dérivées Partielles, Colloques internationaux du C.N.R.S, 117. 1963.

[12]

B. Merlet and M. Pierre, Convergence to equilibrium for the backward Euler scheme and applications, Comm. Pure and Appl. Anal., 9 (2010), 665-702.  doi: 10.3934/cpaa.2010.9.685.

[13]

B. Merlet and T. H. Nguyen, Convergence to equilibrium for the backward euler scheme and applicationsconvergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds, Differential Integral Equations 26 (2013), 571–602. https://projecteuclid.org/euclid.die/1363266079

[14]

J. Nash, The imbedding problem for Riemannian manifolds, Annals of Maths, 63 (1956), 20-63.  doi: 10.2307/1969989.

[15]

J. H. C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math., Oxford 3 (1932), 33–42, . doi: 10.1093/qmath/os-3.1.33.

[1]

Giuseppe Gaeta. On the geometry of twisted prolongations, and dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (4) : 1209-1227. doi: 10.3934/dcdss.2020070

[2]

Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447

[3]

Michael Barnsley, James Keesling, Mrinal Kanti Roychowdhury. Special issue on fractal geometry, dynamical systems, and their applications. Discrete and Continuous Dynamical Systems - S, 2019, 12 (8) : i-i. doi: 10.3934/dcdss.201908i

[4]

Rubén Caballero, Alexandre N. Carvalho, Pedro Marín-Rubio, José Valero. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1049-1077. doi: 10.3934/dcdsb.2019006

[5]

Mohammadreza Molaei. Hyperbolic dynamics of discrete dynamical systems on pseudo-riemannian manifolds. Electronic Research Announcements, 2018, 25: 8-15. doi: 10.3934/era.2018.25.002

[6]

Zaki Chbani, Hassan Riahi. Existence and asymptotic behaviour for solutions of dynamical equilibrium systems. Evolution Equations and Control Theory, 2014, 3 (1) : 1-14. doi: 10.3934/eect.2014.3.1

[7]

Gary Froyland, Philip K. Pollett, Robyn M. Stuart. A closing scheme for finding almost-invariant sets in open dynamical systems. Journal of Computational Dynamics, 2014, 1 (1) : 135-162. doi: 10.3934/jcd.2014.1.135

[8]

Boris Paneah. Noncommutative dynamical systems with two generators and their applications in analysis. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1411-1422. doi: 10.3934/dcds.2003.9.1411

[9]

Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synchronization of dynamical systems on Riemannian manifolds by an extended PID-type control theory: Numerical evaluation. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022047

[10]

Adolfo Damiano Cafaro, Simone Fiori. Optimization of a control law to synchronize first-order dynamical systems on Riemannian manifolds by a transverse component. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3947-3969. doi: 10.3934/dcdsb.2021213

[11]

Maurizio Grasselli, Morgan Pierre. Convergence to equilibrium of solutions of the backward Euler scheme for asymptotically autonomous second-order gradient-like systems. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2393-2416. doi: 10.3934/cpaa.2012.11.2393

[12]

Michael Schönlein. Asymptotic stability and smooth Lyapunov functions for a class of abstract dynamical systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4053-4069. doi: 10.3934/dcds.2017172

[13]

Anhui Gu. Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5737-5767. doi: 10.3934/dcdsb.2019104

[14]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[15]

Delio Mugnolo, René Pröpper. Gradient systems on networks. Conference Publications, 2011, 2011 (Special) : 1078-1090. doi: 10.3934/proc.2011.2011.1078

[16]

Yejuan Wang, Tomás Caraballo. Morse decomposition for gradient-like multi-valued autonomous and nonautonomous dynamical systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2303-2326. doi: 10.3934/dcdss.2020092

[17]

Simone Fiori. Auto-regressive moving-average discrete-time dynamical systems and autocorrelation functions on real-valued Riemannian matrix manifolds. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2785-2808. doi: 10.3934/dcdsb.2014.19.2785

[18]

Mathias Schäffner, Anja Schlömerkemper. On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13 (1) : 95-118. doi: 10.3934/nhm.2018005

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[20]

Zhiwen Zhao. Asymptotic analysis for the electric field concentration with geometry of the core-shell structure. Communications on Pure and Applied Analysis, 2022, 21 (4) : 1109-1137. doi: 10.3934/cpaa.2022012

2021 Impact Factor: 1.865

Metrics

  • PDF downloads (193)
  • HTML views (279)
  • Cited by (0)

Other articles
by authors

[Back to Top]