• Previous Article
    Some new bounds analogous to generalized proportional fractional integral operator with respect to another function
  • DCDS-S Home
  • This Issue
  • Next Article
    Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case
October  2021, 14(10): 3685-3701. doi: 10.3934/dcdss.2020466

Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves

1. 

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

2. 

Department of Mathematics, University of Mazandaran, Babolsar, Iran

3. 

Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa

4. 

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan

* Corresponding author: H. Jafari

Received  February 2020 Revised  June 2020 Published  October 2021 Early access  November 2020

This paper aimed at obtaining the traveling-wave solution of the nonlinear time fractional regularized long-wave equation. In this approach, firstly, the time fractional derivative is accomplished using a finite difference with convergence order $ \mathcal{O}(\delta t^{2-\alpha}) $ for $ 0 < \alpha< 1 $ and the nonlinear term is linearized by a linearization technique. Then, the spatial terms are approximated with the help of the radial basis function (RBF). Numerical stability of the method is analyzed by applying the Von-Neumann linear stability analysis. Three invariant quantities corresponding to mass, momentum and energy are evaluated for further validation. Numerical results demonstrate the accuracy and validity of the proposed method.

Citation: Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3685-3701. doi: 10.3934/dcdss.2020466
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404.  doi: 10.1016/S0898-1221(00)00248-0.  Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A., 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833-845.  doi: 10.1016/j.amc.2005.05.032.  Google Scholar

[6]

L. R. T. GardnerG. A. Gardner and A. Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Meth. Eng., 12 (1996), 795-804.  doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O.  Google Scholar

[7]

A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model, Comput. Econ., 55 (2020), 119-141.  doi: 10.1007/s10614-019-09880-4.  Google Scholar

[8]

A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 50, 22 pp. doi: 10.1007/s40819-019-0635-x.  Google Scholar

[9]

B. Y. Guo and W. M Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.  doi: 10.1016/0021-9991(88)90072-1.  Google Scholar

[10]

A. Houwe, J. Sabi'u, Z. Hammouch and S. Y Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 2019. doi: 10.1088/1402-4896/ab5055.  Google Scholar

[11]

D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV–mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), 77, 16 pp. doi: 10.1186/s13662-018-1531-0.  Google Scholar

[12]

D. KumarJ. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653.  doi: 10.1002/mma.4414.  Google Scholar

[13]

D. KumarJ. SinghD. Baleanu and Su shila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[14]

R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Comput. Phys. Commun., 181 (2010), 1266-1274.  doi: 10.1016/j.cpc.2010.03.015.  Google Scholar

[15]

O. Nikan, A. Golbabai and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus., 134 (2019), 367. doi: 10.1140/epjp/i2019-12748-1.  Google Scholar

[16]

O. NikanH. Jafari and A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627-2637.  doi: 10.1016/j.aej.2020.04.026.  Google Scholar

[17]

O. Nikan, J. A. Machado, A. Golbabai and T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transf., 111 (2020), 104443. doi: 10.1016/j.icheatmasstransfer.2019.104443.  Google Scholar

[18]

Ö. OruçF. Bulut and A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235-3253.  doi: 10.1007/s00009-016-0682-z.  Google Scholar

[19]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations, Acdemic Press, San Diego, 1999.  Google Scholar

[21]

K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118.  doi: 10.1016/j.amc.2004.06.130.  Google Scholar

[22]

B. Sakaİ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727-739.  doi: 10.1080/00207160310001650043.  Google Scholar

[23]

M. Shahriari, B. N. Saray, M. Lakestani and J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 201. doi: 10.1140/epjp/i2018-12030-2.  Google Scholar

[24]

A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a "finite difference mode" with applications to elasticity problems, Comput. Mech., 33 (2003), 68-79.  doi: 10.1007/s00466-003-0501-9.  Google Scholar

[25]

N. ValliammalC. RavichandranZ. Hammouch and H. M. Baskonus, A new investigation on fractional-ordered neutral differential systems with state-dependent delay, Int. J. Nonlin. Sci. Num., 20 (2019), 803-809.  doi: 10.1515/ijnsns-2018-0362.  Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404.  doi: 10.1016/S0898-1221(00)00248-0.  Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A., 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833-845.  doi: 10.1016/j.amc.2005.05.032.  Google Scholar

[6]

L. R. T. GardnerG. A. Gardner and A. Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Meth. Eng., 12 (1996), 795-804.  doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O.  Google Scholar

[7]

A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model, Comput. Econ., 55 (2020), 119-141.  doi: 10.1007/s10614-019-09880-4.  Google Scholar

[8]

A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 50, 22 pp. doi: 10.1007/s40819-019-0635-x.  Google Scholar

[9]

B. Y. Guo and W. M Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.  doi: 10.1016/0021-9991(88)90072-1.  Google Scholar

[10]

A. Houwe, J. Sabi'u, Z. Hammouch and S. Y Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 2019. doi: 10.1088/1402-4896/ab5055.  Google Scholar

[11]

D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV–mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), 77, 16 pp. doi: 10.1186/s13662-018-1531-0.  Google Scholar

[12]

D. KumarJ. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653.  doi: 10.1002/mma.4414.  Google Scholar

[13]

D. KumarJ. SinghD. Baleanu and Su shila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[14]

R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Comput. Phys. Commun., 181 (2010), 1266-1274.  doi: 10.1016/j.cpc.2010.03.015.  Google Scholar

[15]

O. Nikan, A. Golbabai and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus., 134 (2019), 367. doi: 10.1140/epjp/i2019-12748-1.  Google Scholar

[16]

O. NikanH. Jafari and A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627-2637.  doi: 10.1016/j.aej.2020.04.026.  Google Scholar

[17]

O. Nikan, J. A. Machado, A. Golbabai and T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transf., 111 (2020), 104443. doi: 10.1016/j.icheatmasstransfer.2019.104443.  Google Scholar

[18]

Ö. OruçF. Bulut and A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235-3253.  doi: 10.1007/s00009-016-0682-z.  Google Scholar

[19]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations, Acdemic Press, San Diego, 1999.  Google Scholar

[21]

K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118.  doi: 10.1016/j.amc.2004.06.130.  Google Scholar

[22]

B. Sakaİ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727-739.  doi: 10.1080/00207160310001650043.  Google Scholar

[23]

M. Shahriari, B. N. Saray, M. Lakestani and J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 201. doi: 10.1140/epjp/i2018-12030-2.  Google Scholar

[24]

A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a "finite difference mode" with applications to elasticity problems, Comput. Mech., 33 (2003), 68-79.  doi: 10.1007/s00466-003-0501-9.  Google Scholar

[25]

N. ValliammalC. RavichandranZ. Hammouch and H. M. Baskonus, A new investigation on fractional-ordered neutral differential systems with state-dependent delay, Int. J. Nonlin. Sci. Num., 20 (2019), 803-809.  doi: 10.1515/ijnsns-2018-0362.  Google Scholar

Figure 1.  The distributed nodes in the computational domain with a stencil
Figure 2.  The behavior of approximate solution for distinct values of $ \mathrm{d}\; (\alpha = 0.9) $ (left panel) and $ \alpha\; (\mathrm{d} = 0.03) $ (right panel)
Figure 3.  The behavior of approximate solution by letting $ \mathrm{d} = 0.03, $ $ \nu = 1, $ $ h = 0.1, $ $ {\rm{ \mathsf{ τ}}} = 0.001, $ and $ c = 1 $ for $ \alpha \in \{ 0.5, 0.75\} $
Figure 4.  The plots of single solitary wave solution and their computational errors by letting $ \alpha = 1, $ $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ h = 0.125, $ and $ c = 0.8 $ for $ \mathrm{d} = 0.1 $ (up) and $ \mathrm{d} = 0.03 $ (down) at time $ T = 20 $
Table 1.  Invariants and errors for single soliton by taking $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ N = 1000 $, $ \mathrm{d} = 0.1 $ and $ c = 0.5 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.8562E+02 $ $ 1.8585E-09 $ $ 1.5072E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 5 $ $ - $ $ 7.7014E+06 $ $ 4.4431E-07 $ $ 2.4354E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 10 $ $ 631 $ $ 5.8562E+02 $ $ 3.7224E-09 $ $ 3.0141E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 10 $ $ - $ $ 7.7014E+06 $ $ 8.7584E-07 $ $ 4.8478E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 15 $ $ 631 $ $ 5.8562E+02 $ $ 5.5814E-09 $ $ 4.5208E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 15 $ $ - $ $ 7.7014E+06 $ $ 1.3066E-06 $ $ 7.2527E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 20 $ $ 631 $ $ 5.8562E+02 $ $ 7.4388E-09 $ $ 6.0272E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 20 $ $ - $ $ 7.7014E+06 $ $ 1.7364E-06 $ $ 9.6557E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 25 $ $ 631 $ $ 5.8562E+02 $ $ 9.2911E-09 $ $ 7.5333E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 25 $ $ - $ $ 7.7014E+06 $ $ 2.1649E-06 $ $ 1.2058E-05 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.8562E+02 $ $ 1.8585E-09 $ $ 1.5072E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 5 $ $ - $ $ 7.7014E+06 $ $ 4.4431E-07 $ $ 2.4354E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 10 $ $ 631 $ $ 5.8562E+02 $ $ 3.7224E-09 $ $ 3.0141E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 10 $ $ - $ $ 7.7014E+06 $ $ 8.7584E-07 $ $ 4.8478E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 15 $ $ 631 $ $ 5.8562E+02 $ $ 5.5814E-09 $ $ 4.5208E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 15 $ $ - $ $ 7.7014E+06 $ $ 1.3066E-06 $ $ 7.2527E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 20 $ $ 631 $ $ 5.8562E+02 $ $ 7.4388E-09 $ $ 6.0272E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 20 $ $ - $ $ 7.7014E+06 $ $ 1.7364E-06 $ $ 9.6557E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 25 $ $ 631 $ $ 5.8562E+02 $ $ 9.2911E-09 $ $ 7.5333E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 25 $ $ - $ $ 7.7014E+06 $ $ 2.1649E-06 $ $ 1.2058E-05 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
Table 2.  Invariants and errors for single soliton by letting $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ N = 1000 $, $ \mathrm{d} = 0.03 $ and $ c = 0.75 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.7100E+02 $ $ 2.4958E-07 $ $ 8.2317E-07 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 5 $ $ - $ $ 1.3531E+07 $ $ 1.6526E-05 $ $ 5.2640E-05 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 10 $ $ 631 $ $ 5.7100E+02 $ $ 3.6639E-07 $ $ 1.8503E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 10 $ $ - $ $ 1.3531E+07 $ $ 2.6723E-05 $ $ 1.2832E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 15 $ $ 631 $ $ 5.7100E+02 $ $ 4.1549E-07 $ $ 2.7871E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 15 $ $ - $ $ 1.3531E+07 $ $ 3.2940E-05 $ $ 2.0597E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 20 $ $ 631 $ $ 5.7100E+02 $ $ 4.5519E-07 $ $ 3.6033E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 20 $ $ - $ $ 1.3531E+07 $ $ 3.6973E-05 $ $ 2.7849E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 25 $ $ 631 $ $ 5.7100E+02 $ $ 1.1159E-06 $ $ 4.2789E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 25 $ $ - $ $ 1.3531E+07 $ $ 6.4814E-05 $ $ 3.4796E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.7100E+02 $ $ 2.4958E-07 $ $ 8.2317E-07 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 5 $ $ - $ $ 1.3531E+07 $ $ 1.6526E-05 $ $ 5.2640E-05 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 10 $ $ 631 $ $ 5.7100E+02 $ $ 3.6639E-07 $ $ 1.8503E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 10 $ $ - $ $ 1.3531E+07 $ $ 2.6723E-05 $ $ 1.2832E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 15 $ $ 631 $ $ 5.7100E+02 $ $ 4.1549E-07 $ $ 2.7871E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 15 $ $ - $ $ 1.3531E+07 $ $ 3.2940E-05 $ $ 2.0597E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 20 $ $ 631 $ $ 5.7100E+02 $ $ 4.5519E-07 $ $ 3.6033E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 20 $ $ - $ $ 1.3531E+07 $ $ 3.6973E-05 $ $ 2.7849E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 25 $ $ 631 $ $ 5.7100E+02 $ $ 1.1159E-06 $ $ 4.2789E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 25 $ $ - $ $ 1.3531E+07 $ $ 6.4814E-05 $ $ 3.4796E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
Table 3.  Invariants and errors norms by letting $ T = 20, {\rm{ \mathsf{ τ}}} = 0.1 $, $ N = 1000 $, $ \mathrm{d} = 0.1 $ and $ c = 0.75 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Methods$ L_{\infty} $$ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 7.44E-09 $$ 6.03E-08 $ $ 3.97600 $$ 0.809656 $ $ 2.57640 $
[6] $ 8.60E-05 $$ 2.20E-04 $ $ 3.97989 $$ 0.81046 $ $ 2.57902 $
[22] $ 1.40E-05 $$ 1.50E-04 $ $ 3.96466 $$ 0.80963 $ $ 2.56971 $
[21] $ 2.27E-04 $$ 5.32E-04 $ $ 3.97803 $$ 0.80972 $ $ 2.57657 $
[5] $ 2.10E-03 $$ 5.50E-03 $ $ 3.97997 $$ 0.81045 $ $ 2.57901 $
[18] $ 1.15E-04 $$ 3.02E-04 $ $ 3.97988 $$ 0.81046 $ $ 2.57900 $
Methods$ L_{\infty} $$ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 7.44E-09 $$ 6.03E-08 $ $ 3.97600 $$ 0.809656 $ $ 2.57640 $
[6] $ 8.60E-05 $$ 2.20E-04 $ $ 3.97989 $$ 0.81046 $ $ 2.57902 $
[22] $ 1.40E-05 $$ 1.50E-04 $ $ 3.96466 $$ 0.80963 $ $ 2.56971 $
[21] $ 2.27E-04 $$ 5.32E-04 $ $ 3.97803 $$ 0.80972 $ $ 2.57657 $
[5] $ 2.10E-03 $$ 5.50E-03 $ $ 3.97997 $$ 0.81045 $ $ 2.57901 $
[18] $ 1.15E-04 $$ 3.02E-04 $ $ 3.97988 $$ 0.81046 $ $ 2.57900 $
Table 4.  The approximate solution $ u(x, t) $ for $ \mathrm{d} = 0.03 $ and $ x = 2 $ by taking $ {\rm{ \mathsf{ τ}}} = 0.0001, $ $ h = 0.1 $ and $ c = 1 $
$ T $$ \alpha = 0.8 $
Method of [12]Method of [13]Present Method
$ 0.01 $ $ 0.08519576412 $ $ 0.07279537400 $ $ 0.08537651205 $
$ 0.02 $$ 0.08357213920 $ $ 0.07279537400 $ $ 0.08264519947 $
$ 0.03 $$ 0.08214278398 $ $ 0.07128811205 $$ 0.08181623410 $
$ 0.04 $$ 0.08083623113 $ $ 0.07066631588 $ $ 0.08090025798 $
$ 0.05 $$ 0.07962032856 $ $ 0.07198119193 $ $ 0.07973865076 $
$ 0.06 $$ 0.07847675139 $ $ 0.06956555612 $$ 0.07781678793 $
$ 0.07 $$ 0.07739366105 $ $ 0.06906896549 $$ 0.07695183111 $
$ 0.08 $$ 0.07636277983 $ $ 0.06860131956 $$ 0.07614922701 $
$ 0.09 $$ 0.07590726375 $ $ 0.06815922842 $$ 0.07520979105 $
$ 0.10 $$ 0.07443460092 $ $ 0.06774010956 $$ 0.07487357774 $
$ T $$ \alpha = 0.8 $
Method of [12]Method of [13]Present Method
$ 0.01 $ $ 0.08519576412 $ $ 0.07279537400 $ $ 0.08537651205 $
$ 0.02 $$ 0.08357213920 $ $ 0.07279537400 $ $ 0.08264519947 $
$ 0.03 $$ 0.08214278398 $ $ 0.07128811205 $$ 0.08181623410 $
$ 0.04 $$ 0.08083623113 $ $ 0.07066631588 $ $ 0.08090025798 $
$ 0.05 $$ 0.07962032856 $ $ 0.07198119193 $ $ 0.07973865076 $
$ 0.06 $$ 0.07847675139 $ $ 0.06956555612 $$ 0.07781678793 $
$ 0.07 $$ 0.07739366105 $ $ 0.06906896549 $$ 0.07695183111 $
$ 0.08 $$ 0.07636277983 $ $ 0.06860131956 $$ 0.07614922701 $
$ 0.09 $$ 0.07590726375 $ $ 0.06815922842 $$ 0.07520979105 $
$ 0.10 $$ 0.07443460092 $ $ 0.06774010956 $$ 0.07487357774 $
Table 5.  The approximate solution $ u(x, t) $ for $ \mathrm{d} = 0.03 $ and $ x = 2 $ by letting $ {\rm{ \mathsf{ τ}}} = 0.0001, $ $ h = 0.1 $ and $ c = 1 $
$ T $$ \alpha = 0.9 $
Method of [12]Method of [13]Present Method
$ 0.01 $$ 0.08603543519 $ $ 0.07872750691 $$ 0.08640643159 $
$ 0.02 $$ 0.08484592054 $ $ 0.07786464651 $$ 0.08489204894 $
$ 0.03 $$ 0.08373410921 $ $ 0.07706362124 $$ 0.08360036158 $
$ 0.04 $$ 0.08267550004 $ $ 0.07630395167 $$ 0.08286912350 $
$ 0.05 $$ 0.08165864444 $ $ 0.07557650967 $$ 0.08227833554 $
$ 0.06 $$ 0.08067684029 $ $ 0.07487606663 $$ 0.08184132412 $
$ 0.07 $$ 0.07972566456 $ $ 0.07419921448 $$ 0.07986678865 $
$ 0.08 $$ 0.07880196853 $ $ 0.07354354582 $$ 0.07819674713 $
$ 0.09 $$ 0.07790338981 $ $ 0.07290726375 $$ 0.07660742243 $
$ 0.10 $$ 0.07702808602 $ $ 0.07228897179 $$ 0.07661724331 $
$ T $$ \alpha = 0.9 $
Method of [12]Method of [13]Present Method
$ 0.01 $$ 0.08603543519 $ $ 0.07872750691 $$ 0.08640643159 $
$ 0.02 $$ 0.08484592054 $ $ 0.07786464651 $$ 0.08489204894 $
$ 0.03 $$ 0.08373410921 $ $ 0.07706362124 $$ 0.08360036158 $
$ 0.04 $$ 0.08267550004 $ $ 0.07630395167 $$ 0.08286912350 $
$ 0.05 $$ 0.08165864444 $ $ 0.07557650967 $$ 0.08227833554 $
$ 0.06 $$ 0.08067684029 $ $ 0.07487606663 $$ 0.08184132412 $
$ 0.07 $$ 0.07972566456 $ $ 0.07419921448 $$ 0.07986678865 $
$ 0.08 $$ 0.07880196853 $ $ 0.07354354582 $$ 0.07819674713 $
$ 0.09 $$ 0.07790338981 $ $ 0.07290726375 $$ 0.07660742243 $
$ 0.10 $$ 0.07702808602 $ $ 0.07228897179 $$ 0.07661724331 $
Table 6.  Invariants for single solitary wave by taking $ \mathrm{d} = 0.03, $ $ h = 0.1, $ and $ c = 0.95 $ when $ \alpha = 0.5 $
$ T $ $ I_1 $$ I_2 $$ I_3 $
$ 0.00 $ $ 0.197708647779586 $ $ 0.128293299043990 $ $ 0.387537096937904 $
$ 0.01 $ $ 0.197709389335031 $$ 0.126849748687847 $$ 0.387166785333068 $
$ 0.02 $ $ 0.197709389335031 $$ 0.126832805997773 $$ 0.387113999130940 $
$ 0.03 $ $ 0.197705310408835 $$ 0.126802946718958 $$ 0.387058367254051 $
$ 0.04 $ $ 0.197698761277219 $$ 0.126780218019371 $$ 0.387001260827619 $
$ 0.05 $ $ 0.197690652584066 $$ 0.126757804752181 $$ 0.386943215828569 $
$ 0.06 $ $ 0.197681450241377 $$ 0.126735635338625 $$ 0.386884508751169 $
$ 0.07 $ $ 0.197671429969532 $$ 0.126713659452037 $$ 0.386825304512479 $
$ 0.08 $ $ 0.197660770590404 $$ 0.126691840813316 $$ 0.386765710882986 $
$ 0.09 $ $ 0.197649595685292 $$ 0.126670152526776 $$ 0.386705802887836 $
$ 0.10 $ $ 0.197637994751921 $$ 0.126648574139578 $$ 0.386645635247663 $
$ T $ $ I_1 $$ I_2 $$ I_3 $
$ 0.00 $ $ 0.197708647779586 $ $ 0.128293299043990 $ $ 0.387537096937904 $
$ 0.01 $ $ 0.197709389335031 $$ 0.126849748687847 $$ 0.387166785333068 $
$ 0.02 $ $ 0.197709389335031 $$ 0.126832805997773 $$ 0.387113999130940 $
$ 0.03 $ $ 0.197705310408835 $$ 0.126802946718958 $$ 0.387058367254051 $
$ 0.04 $ $ 0.197698761277219 $$ 0.126780218019371 $$ 0.387001260827619 $
$ 0.05 $ $ 0.197690652584066 $$ 0.126757804752181 $$ 0.386943215828569 $
$ 0.06 $ $ 0.197681450241377 $$ 0.126735635338625 $$ 0.386884508751169 $
$ 0.07 $ $ 0.197671429969532 $$ 0.126713659452037 $$ 0.386825304512479 $
$ 0.08 $ $ 0.197660770590404 $$ 0.126691840813316 $$ 0.386765710882986 $
$ 0.09 $ $ 0.197649595685292 $$ 0.126670152526776 $$ 0.386705802887836 $
$ 0.10 $ $ 0.197637994751921 $$ 0.126648574139578 $$ 0.386645635247663 $
[1]

Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021026

[2]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023

[3]

Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057

[4]

H. A. Erbay, S. Erbay, A. Erkip. The Camassa-Holm equation as the long-wave limit of the improved Boussinesq equation and of a class of nonlocal wave equations. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6101-6116. doi: 10.3934/dcds.2016066

[5]

Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021013

[6]

Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317

[7]

Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control & Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033

[8]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[9]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030

[10]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[11]

Qi Hong, Jialing Wang, Yuezheng Gong. Second-order linear structure-preserving modified finite volume schemes for the regularized long wave equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6445-6464. doi: 10.3934/dcdsb.2019146

[12]

Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025

[13]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040

[14]

Nguyen Huy Tuan, Donal O'Regan, Tran Bao Ngoc. Continuity with respect to fractional order of the time fractional diffusion-wave equation. Evolution Equations & Control Theory, 2020, 9 (3) : 773-793. doi: 10.3934/eect.2020033

[15]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[16]

Guido Schneider, Matthias Winter. The amplitude system for a Simultaneous short-wave Turing and long-wave Hopf instability. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021119

[17]

Editorial Office. WITHDRAWN: Fractional diffusion equation described by the Atangana-Baleanu fractional derivative and its approximate solution. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2020173

[18]

Muhammad Bilal Riaz, Syed Tauseef Saeed. Comprehensive analysis of integer-order, Caputo-Fabrizio (CF) and Atangana-Baleanu (ABC) fractional time derivative for MHD Oldroyd-B fluid with slip effect and time dependent boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3719-3746. doi: 10.3934/dcdss.2020430

[19]

T. Colin, D. Lannes. Justification of and long-wave correction to Davey-Stewartson systems from quadratic hyperbolic systems. Discrete & Continuous Dynamical Systems, 2004, 11 (1) : 83-100. doi: 10.3934/dcds.2004.11.83

[20]

Abdelghafour Atlas. Regularity of the attractor for symmetric regularized wave equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 695-704. doi: 10.3934/cpaa.2005.4.695

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (164)
  • HTML views (477)
  • Cited by (0)

[Back to Top]