• Previous Article
    Chaotic oscillations of linear hyperbolic PDE with variable coefficients and implicit boundary conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform
doi: 10.3934/dcdss.2020466

Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves

1. 

School of Mathematics, Iran University of Science and Technology, Narmak, Tehran, Iran

2. 

Department of Mathematics, University of Mazandaran, Babolsar, Iran

3. 

Department of Mathematical Sciences, University of South Africa, UNISA 0003, South Africa

4. 

Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 110122, Taiwan

* Corresponding author: H. Jafari

Received  February 2020 Revised  June 2020 Published  November 2020

This paper aimed at obtaining the traveling-wave solution of the nonlinear time fractional regularized long-wave equation. In this approach, firstly, the time fractional derivative is accomplished using a finite difference with convergence order $ \mathcal{O}(\delta t^{2-\alpha}) $ for $ 0 < \alpha< 1 $ and the nonlinear term is linearized by a linearization technique. Then, the spatial terms are approximated with the help of the radial basis function (RBF). Numerical stability of the method is analyzed by applying the Von-Neumann linear stability analysis. Three invariant quantities corresponding to mass, momentum and energy are evaluated for further validation. Numerical results demonstrate the accuracy and validity of the proposed method.

Citation: Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2020466
References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404.  doi: 10.1016/S0898-1221(00)00248-0.  Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A., 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833-845.  doi: 10.1016/j.amc.2005.05.032.  Google Scholar

[6]

L. R. T. GardnerG. A. Gardner and A. Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Meth. Eng., 12 (1996), 795-804.  doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O.  Google Scholar

[7]

A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model, Comput. Econ., 55 (2020), 119-141.  doi: 10.1007/s10614-019-09880-4.  Google Scholar

[8]

A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 50, 22 pp. doi: 10.1007/s40819-019-0635-x.  Google Scholar

[9]

B. Y. Guo and W. M Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.  doi: 10.1016/0021-9991(88)90072-1.  Google Scholar

[10]

A. Houwe, J. Sabi'u, Z. Hammouch and S. Y Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 2019. doi: 10.1088/1402-4896/ab5055.  Google Scholar

[11]

D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV–mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), 77, 16 pp. doi: 10.1186/s13662-018-1531-0.  Google Scholar

[12]

D. KumarJ. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653.  doi: 10.1002/mma.4414.  Google Scholar

[13]

D. KumarJ. SinghD. Baleanu and Su shila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[14]

R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Comput. Phys. Commun., 181 (2010), 1266-1274.  doi: 10.1016/j.cpc.2010.03.015.  Google Scholar

[15]

O. Nikan, A. Golbabai and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus., 134 (2019), 367. doi: 10.1140/epjp/i2019-12748-1.  Google Scholar

[16]

O. NikanH. Jafari and A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627-2637.  doi: 10.1016/j.aej.2020.04.026.  Google Scholar

[17]

O. Nikan, J. A. Machado, A. Golbabai and T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transf., 111 (2020), 104443. doi: 10.1016/j.icheatmasstransfer.2019.104443.  Google Scholar

[18]

Ö. OruçF. Bulut and A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235-3253.  doi: 10.1007/s00009-016-0682-z.  Google Scholar

[19]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations, Acdemic Press, San Diego, 1999.  Google Scholar

[21]

K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118.  doi: 10.1016/j.amc.2004.06.130.  Google Scholar

[22]

B. Sakaİ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727-739.  doi: 10.1080/00207160310001650043.  Google Scholar

[23]

M. Shahriari, B. N. Saray, M. Lakestani and J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 201. doi: 10.1140/epjp/i2018-12030-2.  Google Scholar

[24]

A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a "finite difference mode" with applications to elasticity problems, Comput. Mech., 33 (2003), 68-79.  doi: 10.1007/s00466-003-0501-9.  Google Scholar

[25]

N. ValliammalC. RavichandranZ. Hammouch and H. M. Baskonus, A new investigation on fractional-ordered neutral differential systems with state-dependent delay, Int. J. Nonlin. Sci. Num., 20 (2019), 803-809.  doi: 10.1515/ijnsns-2018-0362.  Google Scholar

show all references

References:
[1]

T. B. BenjaminJ. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems, Phil. Trans. R. Soc. Lond. A., 272 (1972), 47-78.  doi: 10.1098/rsta.1972.0032.  Google Scholar

[2]

D. Bhardwaj and R. Shankar, A computational method for regularized long wave equation, Comput. Math. Appl., 40 (2000), 1397-1404.  doi: 10.1016/S0898-1221(00)00248-0.  Google Scholar

[3]

J. L. Bona and P. J. Bryant, A mathematical model for long waves generated by wavemakers in non-linear dispersive systems, Proc. Camb. Phil. Soc., 73 (1973), 391-405.  doi: 10.1017/S0305004100076945.  Google Scholar

[4]

J. L. BonaW. G. Pritchard and L. R. Scott, An evaluation of a model equation for water waves, Phil. Trans. R. Soc. Lond. A., 302 (1981), 457-510.  doi: 10.1098/rsta.1981.0178.  Google Scholar

[5]

A. Esen and S. Kutluay, Application of a lumped Galerkin method to the regularized long wave equation, Appl. Math. Comput., 174 (2006), 833-845.  doi: 10.1016/j.amc.2005.05.032.  Google Scholar

[6]

L. R. T. GardnerG. A. Gardner and A. Dogan, A least-squares finite element scheme for the RLW equation, Comm. Numer. Meth. Eng., 12 (1996), 795-804.  doi: 10.1002/(SICI)1099-0887(199611)12:11<795::AID-CNM22>3.0.CO;2-O.  Google Scholar

[7]

A. Golbabai and O. Nikan, A computational method based on the moving least-squares approach for pricing double barrier options in a time-fractional Black–Scholes model, Comput. Econ., 55 (2020), 119-141.  doi: 10.1007/s10614-019-09880-4.  Google Scholar

[8]

A. Golbabai, O. Nikan and T. Nikazad, Numerical investigation of the time fractional mobile-immobile advection-dispersion model arising from solute transport in porous media, Int. J. Appl. Comput. Math., 5 (2019), 50, 22 pp. doi: 10.1007/s40819-019-0635-x.  Google Scholar

[9]

B. Y. Guo and W. M Cao, The Fourier pseudospectral method with a restrain operator for the RLW equation, J. Comput. Phys., 74 (1988), 110-126.  doi: 10.1016/0021-9991(88)90072-1.  Google Scholar

[10]

A. Houwe, J. Sabi'u, Z. Hammouch and S. Y Doka, Solitary pulses of the conformable derivative nonlinear differential equation governing wave propagation in low-pass electrical transmission line, Phys. Scr., 2019. doi: 10.1088/1402-4896/ab5055.  Google Scholar

[11]

D. Kaya, S. Gülbahar, A. Yokuş and M. Gülbahar, Solutions of the fractional combined KdV–mKdV equation with collocation method using radial basis function and their geometrical obstructions, Adv. Difference Equ., 2018 (2018), 77, 16 pp. doi: 10.1186/s13662-018-1531-0.  Google Scholar

[12]

D. KumarJ. Singh and D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642-5653.  doi: 10.1002/mma.4414.  Google Scholar

[13]

D. KumarJ. SinghD. Baleanu and Su shila, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Phys. A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[14]

R. Mokhtari and M. Mohammadi, Numerical solution of GRLW equation using Sinc-collocation method, Comput. Phys. Commun., 181 (2010), 1266-1274.  doi: 10.1016/j.cpc.2010.03.015.  Google Scholar

[15]

O. Nikan, A. Golbabai and T. Nikazad, Solitary wave solution of the nonlinear KdV-Benjamin-Bona-Mahony-Burgers model via two meshless methods, Eur. Phys. J. Plus., 134 (2019), 367. doi: 10.1140/epjp/i2019-12748-1.  Google Scholar

[16]

O. NikanH. Jafari and A. Golbabai, Numerical analysis of the fractional evolution model for heat flow in materials with memory, Alex. Eng. J., 59 (2020), 2627-2637.  doi: 10.1016/j.aej.2020.04.026.  Google Scholar

[17]

O. Nikan, J. A. Machado, A. Golbabai and T. Nikazad, Numerical approach for modeling fractal mobile/immobile transport model in porous and fractured media, Int. Commun. Heat Mass Transf., 111 (2020), 104443. doi: 10.1016/j.icheatmasstransfer.2019.104443.  Google Scholar

[18]

Ö. OruçF. Bulut and A. Esen, Numerical solutions of regularized long wave equation by Haar wavelet method, Mediterr. J. Math., 13 (2016), 3235-3253.  doi: 10.1007/s00009-016-0682-z.  Google Scholar

[19]

D. H. Peregrine, Calculations of the development of an undular bore, J. Fluid. Mech., 25 (1966), 321-330.  doi: 10.1017/S0022112066001678.  Google Scholar

[20]

I. Podlubny, Fractional Differential Equations, Acdemic Press, San Diego, 1999.  Google Scholar

[21]

K. R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167 (2005), 1101-1118.  doi: 10.1016/j.amc.2004.06.130.  Google Scholar

[22]

B. Sakaİ. Dağ and A. Doğan, Galerkin method for the numerical solution of the RLW equation using quadratic B-splines, Int. J. Comput. Math., 81 (2004), 727-739.  doi: 10.1080/00207160310001650043.  Google Scholar

[23]

M. Shahriari, B. N. Saray, M. Lakestani and J. Manafian, Numerical treatment of the Benjamin-Bona-Mahony equation using alpert multiwavelets, Eur. Phys. J. Plus, 133 (2018), 201. doi: 10.1140/epjp/i2018-12030-2.  Google Scholar

[24]

A. I. Tolstykh and D. A. Shirobokov, On using radial basis functions in a "finite difference mode" with applications to elasticity problems, Comput. Mech., 33 (2003), 68-79.  doi: 10.1007/s00466-003-0501-9.  Google Scholar

[25]

N. ValliammalC. RavichandranZ. Hammouch and H. M. Baskonus, A new investigation on fractional-ordered neutral differential systems with state-dependent delay, Int. J. Nonlin. Sci. Num., 20 (2019), 803-809.  doi: 10.1515/ijnsns-2018-0362.  Google Scholar

Figure 1.  The distributed nodes in the computational domain with a stencil
Figure 2.  The behavior of approximate solution for distinct values of $ \mathrm{d}\; (\alpha = 0.9) $ (left panel) and $ \alpha\; (\mathrm{d} = 0.03) $ (right panel)
Figure 3.  The behavior of approximate solution by letting $ \mathrm{d} = 0.03, $ $ \nu = 1, $ $ h = 0.1, $ $ {\rm{ \mathsf{ τ}}} = 0.001, $ and $ c = 1 $ for $ \alpha \in \{ 0.5, 0.75\} $
Figure 4.  The plots of single solitary wave solution and their computational errors by letting $ \alpha = 1, $ $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ h = 0.125, $ and $ c = 0.8 $ for $ \mathrm{d} = 0.1 $ (up) and $ \mathrm{d} = 0.03 $ (down) at time $ T = 20 $
Table 1.  Invariants and errors for single soliton by taking $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ N = 1000 $, $ \mathrm{d} = 0.1 $ and $ c = 0.5 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.8562E+02 $ $ 1.8585E-09 $ $ 1.5072E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 5 $ $ - $ $ 7.7014E+06 $ $ 4.4431E-07 $ $ 2.4354E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 10 $ $ 631 $ $ 5.8562E+02 $ $ 3.7224E-09 $ $ 3.0141E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 10 $ $ - $ $ 7.7014E+06 $ $ 8.7584E-07 $ $ 4.8478E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 15 $ $ 631 $ $ 5.8562E+02 $ $ 5.5814E-09 $ $ 4.5208E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 15 $ $ - $ $ 7.7014E+06 $ $ 1.3066E-06 $ $ 7.2527E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 20 $ $ 631 $ $ 5.8562E+02 $ $ 7.4388E-09 $ $ 6.0272E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 20 $ $ - $ $ 7.7014E+06 $ $ 1.7364E-06 $ $ 9.6557E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 25 $ $ 631 $ $ 5.8562E+02 $ $ 9.2911E-09 $ $ 7.5333E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 25 $ $ - $ $ 7.7014E+06 $ $ 2.1649E-06 $ $ 1.2058E-05 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.8562E+02 $ $ 1.8585E-09 $ $ 1.5072E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 5 $ $ - $ $ 7.7014E+06 $ $ 4.4431E-07 $ $ 2.4354E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 10 $ $ 631 $ $ 5.8562E+02 $ $ 3.7224E-09 $ $ 3.0141E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 10 $ $ - $ $ 7.7014E+06 $ $ 8.7584E-07 $ $ 4.8478E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 15 $ $ 631 $ $ 5.8562E+02 $ $ 5.5814E-09 $ $ 4.5208E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 15 $ $ - $ $ 7.7014E+06 $ $ 1.3066E-06 $ $ 7.2527E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 20 $ $ 631 $ $ 5.8562E+02 $ $ 7.4388E-09 $ $ 6.0272E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 20 $ $ - $ $ 7.7014E+06 $ $ 1.7364E-06 $ $ 9.6557E-06 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
RBF-FD $ 25 $ $ 631 $ $ 5.8562E+02 $ $ 9.2911E-09 $ $ 7.5333E-08 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
GRBF $ 25 $ $ - $ $ 7.7014E+06 $ $ 2.1649E-06 $ $ 1.2058E-05 $ $ 3.9759698 $ $ 0.80962219 $ $ 2.5764285 $
Table 2.  Invariants and errors for single soliton by letting $ {\rm{ \mathsf{ τ}}} = 0.01 $, $ N = 1000 $, $ \mathrm{d} = 0.03 $ and $ c = 0.75 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.7100E+02 $ $ 2.4958E-07 $ $ 8.2317E-07 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 5 $ $ - $ $ 1.3531E+07 $ $ 1.6526E-05 $ $ 5.2640E-05 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 10 $ $ 631 $ $ 5.7100E+02 $ $ 3.6639E-07 $ $ 1.8503E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 10 $ $ - $ $ 1.3531E+07 $ $ 2.6723E-05 $ $ 1.2832E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 15 $ $ 631 $ $ 5.7100E+02 $ $ 4.1549E-07 $ $ 2.7871E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 15 $ $ - $ $ 1.3531E+07 $ $ 3.2940E-05 $ $ 2.0597E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 20 $ $ 631 $ $ 5.7100E+02 $ $ 4.5519E-07 $ $ 3.6033E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 20 $ $ - $ $ 1.3531E+07 $ $ 3.6973E-05 $ $ 2.7849E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 25 $ $ 631 $ $ 5.7100E+02 $ $ 1.1159E-06 $ $ 4.2789E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 25 $ $ - $ $ 1.3531E+07 $ $ 6.4814E-05 $ $ 3.4796E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
Method $ T $ $ N_I $ Cond($ M $) $ L_{\infty} $ $ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 5 $ $ 631 $ $ 5.7100E+02 $ $ 2.4958E-07 $ $ 8.2317E-07 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 5 $ $ - $ $ 1.3531E+07 $ $ 1.6526E-05 $ $ 5.2640E-05 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 10 $ $ 631 $ $ 5.7100E+02 $ $ 3.6639E-07 $ $ 1.8503E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 10 $ $ - $ $ 1.3531E+07 $ $ 2.6723E-05 $ $ 1.2832E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 15 $ $ 631 $ $ 5.7100E+02 $ $ 4.1549E-07 $ $ 2.7871E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 15 $ $ - $ $ 1.3531E+07 $ $ 3.2940E-05 $ $ 2.0597E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 20 $ $ 631 $ $ 5.7100E+02 $ $ 4.5519E-07 $ $ 3.6033E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 20 $ $ - $ $ 1.3531E+07 $ $ 3.6973E-05 $ $ 2.7849E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
RBF-FD $ 25 $ $ 631 $ $ 5.7100E+02 $ $ 1.1159E-06 $ $ 4.2789E-06 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
GRBF $ 25 $ $ - $ $ 1.3531E+07 $ $ 6.4814E-05 $ $ 3.4796E-04 $ $ 2.1072996 $ $ 0.12717442 $ $ 0.38841718 $
Table 3.  Invariants and errors norms by letting $ T = 20, {\rm{ \mathsf{ τ}}} = 0.1 $, $ N = 1000 $, $ \mathrm{d} = 0.1 $ and $ c = 0.75 $ when $ \alpha = 1 $ in the domain $ [-80,100] $
Methods$ L_{\infty} $$ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 7.44E-09 $$ 6.03E-08 $ $ 3.97600 $$ 0.809656 $ $ 2.57640 $
[6] $ 8.60E-05 $$ 2.20E-04 $ $ 3.97989 $$ 0.81046 $ $ 2.57902 $
[22] $ 1.40E-05 $$ 1.50E-04 $ $ 3.96466 $$ 0.80963 $ $ 2.56971 $
[21] $ 2.27E-04 $$ 5.32E-04 $ $ 3.97803 $$ 0.80972 $ $ 2.57657 $
[5] $ 2.10E-03 $$ 5.50E-03 $ $ 3.97997 $$ 0.81045 $ $ 2.57901 $
[18] $ 1.15E-04 $$ 3.02E-04 $ $ 3.97988 $$ 0.81046 $ $ 2.57900 $
Methods$ L_{\infty} $$ L_2 $ $ I_1 $ $ I_2 $ $ I_3 $
RBF-FD $ 7.44E-09 $$ 6.03E-08 $ $ 3.97600 $$ 0.809656 $ $ 2.57640 $
[6] $ 8.60E-05 $$ 2.20E-04 $ $ 3.97989 $$ 0.81046 $ $ 2.57902 $
[22] $ 1.40E-05 $$ 1.50E-04 $ $ 3.96466 $$ 0.80963 $ $ 2.56971 $
[21] $ 2.27E-04 $$ 5.32E-04 $ $ 3.97803 $$ 0.80972 $ $ 2.57657 $
[5] $ 2.10E-03 $$ 5.50E-03 $ $ 3.97997 $$ 0.81045 $ $ 2.57901 $
[18] $ 1.15E-04 $$ 3.02E-04 $ $ 3.97988 $$ 0.81046 $ $ 2.57900 $
Table 4.  The approximate solution $ u(x, t) $ for $ \mathrm{d} = 0.03 $ and $ x = 2 $ by taking $ {\rm{ \mathsf{ τ}}} = 0.0001, $ $ h = 0.1 $ and $ c = 1 $
$ T $$ \alpha = 0.8 $
Method of [12]Method of [13]Present Method
$ 0.01 $ $ 0.08519576412 $ $ 0.07279537400 $ $ 0.08537651205 $
$ 0.02 $$ 0.08357213920 $ $ 0.07279537400 $ $ 0.08264519947 $
$ 0.03 $$ 0.08214278398 $ $ 0.07128811205 $$ 0.08181623410 $
$ 0.04 $$ 0.08083623113 $ $ 0.07066631588 $ $ 0.08090025798 $
$ 0.05 $$ 0.07962032856 $ $ 0.07198119193 $ $ 0.07973865076 $
$ 0.06 $$ 0.07847675139 $ $ 0.06956555612 $$ 0.07781678793 $
$ 0.07 $$ 0.07739366105 $ $ 0.06906896549 $$ 0.07695183111 $
$ 0.08 $$ 0.07636277983 $ $ 0.06860131956 $$ 0.07614922701 $
$ 0.09 $$ 0.07590726375 $ $ 0.06815922842 $$ 0.07520979105 $
$ 0.10 $$ 0.07443460092 $ $ 0.06774010956 $$ 0.07487357774 $
$ T $$ \alpha = 0.8 $
Method of [12]Method of [13]Present Method
$ 0.01 $ $ 0.08519576412 $ $ 0.07279537400 $ $ 0.08537651205 $
$ 0.02 $$ 0.08357213920 $ $ 0.07279537400 $ $ 0.08264519947 $
$ 0.03 $$ 0.08214278398 $ $ 0.07128811205 $$ 0.08181623410 $
$ 0.04 $$ 0.08083623113 $ $ 0.07066631588 $ $ 0.08090025798 $
$ 0.05 $$ 0.07962032856 $ $ 0.07198119193 $ $ 0.07973865076 $
$ 0.06 $$ 0.07847675139 $ $ 0.06956555612 $$ 0.07781678793 $
$ 0.07 $$ 0.07739366105 $ $ 0.06906896549 $$ 0.07695183111 $
$ 0.08 $$ 0.07636277983 $ $ 0.06860131956 $$ 0.07614922701 $
$ 0.09 $$ 0.07590726375 $ $ 0.06815922842 $$ 0.07520979105 $
$ 0.10 $$ 0.07443460092 $ $ 0.06774010956 $$ 0.07487357774 $
Table 5.  The approximate solution $ u(x, t) $ for $ \mathrm{d} = 0.03 $ and $ x = 2 $ by letting $ {\rm{ \mathsf{ τ}}} = 0.0001, $ $ h = 0.1 $ and $ c = 1 $
$ T $$ \alpha = 0.9 $
Method of [12]Method of [13]Present Method
$ 0.01 $$ 0.08603543519 $ $ 0.07872750691 $$ 0.08640643159 $
$ 0.02 $$ 0.08484592054 $ $ 0.07786464651 $$ 0.08489204894 $
$ 0.03 $$ 0.08373410921 $ $ 0.07706362124 $$ 0.08360036158 $
$ 0.04 $$ 0.08267550004 $ $ 0.07630395167 $$ 0.08286912350 $
$ 0.05 $$ 0.08165864444 $ $ 0.07557650967 $$ 0.08227833554 $
$ 0.06 $$ 0.08067684029 $ $ 0.07487606663 $$ 0.08184132412 $
$ 0.07 $$ 0.07972566456 $ $ 0.07419921448 $$ 0.07986678865 $
$ 0.08 $$ 0.07880196853 $ $ 0.07354354582 $$ 0.07819674713 $
$ 0.09 $$ 0.07790338981 $ $ 0.07290726375 $$ 0.07660742243 $
$ 0.10 $$ 0.07702808602 $ $ 0.07228897179 $$ 0.07661724331 $
$ T $$ \alpha = 0.9 $
Method of [12]Method of [13]Present Method
$ 0.01 $$ 0.08603543519 $ $ 0.07872750691 $$ 0.08640643159 $
$ 0.02 $$ 0.08484592054 $ $ 0.07786464651 $$ 0.08489204894 $
$ 0.03 $$ 0.08373410921 $ $ 0.07706362124 $$ 0.08360036158 $
$ 0.04 $$ 0.08267550004 $ $ 0.07630395167 $$ 0.08286912350 $
$ 0.05 $$ 0.08165864444 $ $ 0.07557650967 $$ 0.08227833554 $
$ 0.06 $$ 0.08067684029 $ $ 0.07487606663 $$ 0.08184132412 $
$ 0.07 $$ 0.07972566456 $ $ 0.07419921448 $$ 0.07986678865 $
$ 0.08 $$ 0.07880196853 $ $ 0.07354354582 $$ 0.07819674713 $
$ 0.09 $$ 0.07790338981 $ $ 0.07290726375 $$ 0.07660742243 $
$ 0.10 $$ 0.07702808602 $ $ 0.07228897179 $$ 0.07661724331 $
Table 6.  Invariants for single solitary wave by taking $ \mathrm{d} = 0.03, $ $ h = 0.1, $ and $ c = 0.95 $ when $ \alpha = 0.5 $
$ T $ $ I_1 $$ I_2 $$ I_3 $
$ 0.00 $ $ 0.197708647779586 $ $ 0.128293299043990 $ $ 0.387537096937904 $
$ 0.01 $ $ 0.197709389335031 $$ 0.126849748687847 $$ 0.387166785333068 $
$ 0.02 $ $ 0.197709389335031 $$ 0.126832805997773 $$ 0.387113999130940 $
$ 0.03 $ $ 0.197705310408835 $$ 0.126802946718958 $$ 0.387058367254051 $
$ 0.04 $ $ 0.197698761277219 $$ 0.126780218019371 $$ 0.387001260827619 $
$ 0.05 $ $ 0.197690652584066 $$ 0.126757804752181 $$ 0.386943215828569 $
$ 0.06 $ $ 0.197681450241377 $$ 0.126735635338625 $$ 0.386884508751169 $
$ 0.07 $ $ 0.197671429969532 $$ 0.126713659452037 $$ 0.386825304512479 $
$ 0.08 $ $ 0.197660770590404 $$ 0.126691840813316 $$ 0.386765710882986 $
$ 0.09 $ $ 0.197649595685292 $$ 0.126670152526776 $$ 0.386705802887836 $
$ 0.10 $ $ 0.197637994751921 $$ 0.126648574139578 $$ 0.386645635247663 $
$ T $ $ I_1 $$ I_2 $$ I_3 $
$ 0.00 $ $ 0.197708647779586 $ $ 0.128293299043990 $ $ 0.387537096937904 $
$ 0.01 $ $ 0.197709389335031 $$ 0.126849748687847 $$ 0.387166785333068 $
$ 0.02 $ $ 0.197709389335031 $$ 0.126832805997773 $$ 0.387113999130940 $
$ 0.03 $ $ 0.197705310408835 $$ 0.126802946718958 $$ 0.387058367254051 $
$ 0.04 $ $ 0.197698761277219 $$ 0.126780218019371 $$ 0.387001260827619 $
$ 0.05 $ $ 0.197690652584066 $$ 0.126757804752181 $$ 0.386943215828569 $
$ 0.06 $ $ 0.197681450241377 $$ 0.126735635338625 $$ 0.386884508751169 $
$ 0.07 $ $ 0.197671429969532 $$ 0.126713659452037 $$ 0.386825304512479 $
$ 0.08 $ $ 0.197660770590404 $$ 0.126691840813316 $$ 0.386765710882986 $
$ 0.09 $ $ 0.197649595685292 $$ 0.126670152526776 $$ 0.386705802887836 $
$ 0.10 $ $ 0.197637994751921 $$ 0.126648574139578 $$ 0.386645635247663 $
[1]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[2]

Emanuela R. S. Coelho, Valéria N. Domingos Cavalcanti, Vinicius A. Peralta. Exponential stability for a transmission problem of a nonlinear viscoelastic wave equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021055

[3]

Liangliang Ma. Stability of hydrostatic equilibrium to the 2D fractional Boussinesq equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021068

[4]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021, 16 (2) : 155-185. doi: 10.3934/nhm.2021003

[5]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[6]

Shoichi Hasegawa, Norihisa Ikoma, Tatsuki Kawakami. On weak solutions to a fractional Hardy–Hénon equation: Part I: Nonexistence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021033

[7]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3555-3577. doi: 10.3934/dcds.2021007

[8]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[9]

Dayalal Suthar, Sunil Dutt Purohit, Haile Habenom, Jagdev Singh. Class of integrals and applications of fractional kinetic equation with the generalized multi-index Bessel function. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021019

[10]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[11]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

[12]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

[13]

Seddigheh Banihashemi, Hossein Jafaria, Afshin Babaei. A novel collocation approach to solve a nonlinear stochastic differential equation of fractional order involving a constant delay. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021025

[14]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[15]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[16]

Maha Daoud, El Haj Laamri. Fractional Laplacians : A short survey. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021027

[17]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[18]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[19]

George A. Anastassiou. Iyengar-Hilfer fractional inequalities. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021004

[20]

María J. Garrido-Atienza, Bohdan Maslowski, Jana  Šnupárková. Semilinear stochastic equations with bilinear fractional noise. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3075-3094. doi: 10.3934/dcdsb.2016088

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]