February  2022, 15(2): 245-263. doi: 10.3934/dcdss.2020468

Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species

Department of Mathematical Sciences, College of Science, UAE University, Al Ain, 15551, UAE

* Corresponding author: F.A. Rihan (frihan@uaeu.ac.ae)

Received  April 2020 Revised  September 2020 Published  February 2022 Early access  November 2020

Fund Project: This work supported by UPAR-Project (Code # G00003440)

Environmental factors and random variation have strong effects on the dynamics of biological and ecological systems. In this paper, we propose a stochastic delay differential model of two-prey, one-predator system with cooperation among prey species against predator. The model has a global positive solution. Sufficient conditions of existence and uniqueness of an ergodic stationary distribution of the positive solution are provided, by constructing suitable Lyapunov functionals. Sufficient conditions for possible extinction of the predator populations are also obtained. The conditions are expressed in terms of a threshold parameter $ {\mathcal R}_0^s $ that relies on the environmental noise. Illustrative examples and numerical simulations, using Milstein's scheme, are carried out to illustrate the theoretical results. A small scale of noise can promote survival of the species. While relative large noises can lead to possible extinction of the species in such an environment.

Citation: Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 245-263. doi: 10.3934/dcdss.2020468
References:
[1]

J. Alebraheem and Y. A. Hasan, Dynamics of a two predator–one prey system, Computational and Applied Mathematics, 33 (2014), 767-780.  doi: 10.1007/s40314-013-0093-8.

[2]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 292 (2004), 364-380.  doi: 10.1016/j.jmaa.2003.12.004.

[3]

Y. Bai and Y. Li, Stability and Hopf bifurcation for a stage-structured predator–prey model incorporating refuge for prey and additional food for predator, Advances in Difference Equations, 2019 (2019), 1-20.  doi: 10.1186/s13662-019-1979-6.

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, Journal of Mathematical Analysis and Applications, 391 (2012), 363-375.  doi: 10.1016/j.jmaa.2012.02.043.

[5]

G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, Journal of Computational and Applied Mathematics, 125 (2000), 183-199.  doi: 10.1016/S0377-0427(00)00468-4.

[6]

E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, Journal of Computational and Applied Mathematics, 125 (2000), 297-307.  doi: 10.1016/S0377-0427(00)00475-1.

[7]

B. Dubey and A. Kumar, Dynamics of prey–predator model with stage structure in prey including maturation and gestation delays, Nonlinear Dynamics, 96 (2019), 2653-2679.  doi: 10.1007/s11071-019-04951-5.

[8]

M. F. Elettreby, Two-prey one-predator model, Chaos, Solitons & Fractals, 39 (2009), 2018-2027.  doi: 10.1016/j.chaos.2007.06.058.

[9]

T. C. Gard, Persistence in stochastic food web models, Bulletin of Mathematical Biology, 46 (1984), 357-370.  doi: 10.1016/S0092-8240(84)80044-0.

[10]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.

[11]

R. Khasminskii, Stochastic Stability of Differential Equations, Springer-Verlag Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[12]

P. E. Kloeden and T. Shardlow, The Milstein scheme for stochastic delay differential equations without using anticipative calculus, Stochastic Analysis and Applications, 30 (2012), 181-202.  doi: 10.1080/07362994.2012.628907.

[13]

S. Kundu and S. Maitra, Dynamical behaviour of a delayed three species predator–prey model with cooperation among the prey species, Nonlinear Dynamics, 92 (2018), 627-643.  doi: 10.1007/s11071-018-4079-3.

[14]

D. LiS. Liu and J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, Journal of Differential Equations, 263 (2017), 8873-8915.  doi: 10.1016/j.jde.2017.08.066.

[15]

R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228.  doi: 10.1080/17442508008833146.

[16]

Z. Liu and R. Tan, Impulsive harvesting and stocking in a monod–haldane functional response predator–prey system, Chaos, Solitons & Fractals, 34 (2007), 454-464.  doi: 10.1016/j.chaos.2006.03.054.

[17]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Stationary distribution and extinction of a stochastic predator–prey model with herd behavior, Journal of the Franklin Institute, 355 (2018), 8177-8193.  doi: 10.1016/j.jfranklin.2018.09.013.

[18]

A. J. Lotka, Elements of Physical Biology, Baltimore: Williams & Wilkins Co., 1925.

[19]

X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2008. doi: 10.1533/9780857099402.

[20]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[21]

X. MaoS. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 287 (2003), 141-156.  doi: 10.1016/S0022-247X(03)00539-0.

[22]

J. D. Murray, Mathematical Biology, Springer New york, 1993. doi: 10.1007/b98869.

[23]

R. RakkiyappanA. ChandrasekarF. A. Rihan and S. Lakshmanan, Exponential state estimation of Markovian jumping genetic regulatory networks with mode-dependent probabilistic time-varying delays, Mathematical Biosciences, 25 (2014), 30-53.  doi: 10.1016/j.mbs.2014.02.008.

[24]

R RakkiyappanG. VelmuruganF. A. Rihan and and S. Lakshmanan, Stability analysis of memristor-based complex-valued recurrent neural networks with time delays, Complexity, 21 (2015), 14-39.  doi: 10.1002/cplx.21618.

[25]

F. A. RihanS. LakshmananA. H. HashishR. Rakkiyappan and E. Ahmed, Fractional-order delayed predator–prey systems with {Holling type-II} functional response, Nonlinear Dynamics, 80 (2015), 777-789.  doi: 10.1007/s11071-015-1905-8.

[26]

F. A. Rihan, H. J. Alsakaji and C. Rajivganthi, Stability and Hopf bifurcation of three-species prey-predator system with time delays and Allee effect, Complexity, 2020 (2020), 7306412. doi: 10.1155/2020/7306412.

[27]

F. A. RihanA. A. Azamov and H. J. Al-Sakaji, An inverse problem for delay differential equations: Parameter estimation, nonlinearity, sensitivity, Applied Mathematics & Information Sciences, 12 (2018), 63-74.  doi: 10.18576/amis/120106.

[28]

F. A. Rihan and H. J. Alsakaji, Persistence and extinction for stochastic delay differential model of prey-predator system with hunting cooperation in predators, Advances in Difference Equations, 124 (2020), 1-22.  doi: 10.1186/s13662-020-02579-z.

[29]

F.A. RihanH.J. Alsakaji and C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 2020 (2020), 1-20.  doi: 10.1186/s13662-020-02964-8.

[30]

F. A. Rihan, C. Rajivganthi and P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete Dynamics in Nature and Society, 2017 (2017), Art. ID 5394528, 11 pp. doi: 10.1155/2017/5394528.

[31]

T. Saha and M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey–predator model within fluctuating environment, Applied Mathematics and Computation, 196 (2008), 458-478.  doi: 10.1016/j.amc.2007.06.017.

[32]

G. TangS. Tang and R. A. Cheke, Global analysis of a holling type II predator–prey model with a constant prey refuge, Nonlinear Dynamics, 76 (2014), 635-647.  doi: 10.1007/s11071-013-1157-4.

[33]

D. A. Vasseuri and P. Yodzis, The color of environmental noise, Ecology, 85 (2004), 1146-1152. 

[34]

V. Volterra, Variazioni e Fluttuazioni Del Numero D'individui in Specie Animali Conviventi, C. Ferrari, 1927.

[35]

X. MaoC. Yuan and J. Zou, Stochastic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320.  doi: 10.1016/j.jmaa.2004.09.027.

[36]

X. Zhao and Z. Zeng, Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator, Physica A: Statistical Mechanics and its Applications, 545 (2020), 123310, 17 pp. doi: 10.1016/j.physa.2019.123310.

show all references

References:
[1]

J. Alebraheem and Y. A. Hasan, Dynamics of a two predator–one prey system, Computational and Applied Mathematics, 33 (2014), 767-780.  doi: 10.1007/s40314-013-0093-8.

[2]

A. Bahar and X. Mao, Stochastic delay Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 292 (2004), 364-380.  doi: 10.1016/j.jmaa.2003.12.004.

[3]

Y. Bai and Y. Li, Stability and Hopf bifurcation for a stage-structured predator–prey model incorporating refuge for prey and additional food for predator, Advances in Difference Equations, 2019 (2019), 1-20.  doi: 10.1186/s13662-019-1979-6.

[4]

J. Bao and C. Yuan, Stochastic population dynamics driven by Lévy noise, Journal of Mathematical Analysis and Applications, 391 (2012), 363-375.  doi: 10.1016/j.jmaa.2012.02.043.

[5]

G. A. Bocharov and F. A. Rihan, Numerical modelling in biosciences using delay differential equations, Journal of Computational and Applied Mathematics, 125 (2000), 183-199.  doi: 10.1016/S0377-0427(00)00468-4.

[6]

E. Buckwar, Introduction to the numerical analysis of stochastic delay differential equations, Journal of Computational and Applied Mathematics, 125 (2000), 297-307.  doi: 10.1016/S0377-0427(00)00475-1.

[7]

B. Dubey and A. Kumar, Dynamics of prey–predator model with stage structure in prey including maturation and gestation delays, Nonlinear Dynamics, 96 (2019), 2653-2679.  doi: 10.1007/s11071-019-04951-5.

[8]

M. F. Elettreby, Two-prey one-predator model, Chaos, Solitons & Fractals, 39 (2009), 2018-2027.  doi: 10.1016/j.chaos.2007.06.058.

[9]

T. C. Gard, Persistence in stochastic food web models, Bulletin of Mathematical Biology, 46 (1984), 357-370.  doi: 10.1016/S0092-8240(84)80044-0.

[10]

D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001), 525-546.  doi: 10.1137/S0036144500378302.

[11]

R. Khasminskii, Stochastic Stability of Differential Equations, Springer-Verlag Berlin Heidelberg, 2012. doi: 10.1007/978-3-642-23280-0.

[12]

P. E. Kloeden and T. Shardlow, The Milstein scheme for stochastic delay differential equations without using anticipative calculus, Stochastic Analysis and Applications, 30 (2012), 181-202.  doi: 10.1080/07362994.2012.628907.

[13]

S. Kundu and S. Maitra, Dynamical behaviour of a delayed three species predator–prey model with cooperation among the prey species, Nonlinear Dynamics, 92 (2018), 627-643.  doi: 10.1007/s11071-018-4079-3.

[14]

D. LiS. Liu and J. Cui, Threshold dynamics and ergodicity of an SIRS epidemic model with Markovian switching, Journal of Differential Equations, 263 (2017), 8873-8915.  doi: 10.1016/j.jde.2017.08.066.

[15]

R. S. Liptser, A strong law of large numbers for local martingales, Stochastics, 3 (1980), 217-228.  doi: 10.1080/17442508008833146.

[16]

Z. Liu and R. Tan, Impulsive harvesting and stocking in a monod–haldane functional response predator–prey system, Chaos, Solitons & Fractals, 34 (2007), 454-464.  doi: 10.1016/j.chaos.2006.03.054.

[17]

Q. LiuD. JiangT. Hayat and A. Alsaedi, Stationary distribution and extinction of a stochastic predator–prey model with herd behavior, Journal of the Franklin Institute, 355 (2018), 8177-8193.  doi: 10.1016/j.jfranklin.2018.09.013.

[18]

A. J. Lotka, Elements of Physical Biology, Baltimore: Williams & Wilkins Co., 1925.

[19]

X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2008. doi: 10.1533/9780857099402.

[20]

X. MaoG. Marion and E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stochastic Processes and their Applications, 97 (2002), 95-110.  doi: 10.1016/S0304-4149(01)00126-0.

[21]

X. MaoS. Sabanis and E. Renshaw, Asymptotic behaviour of the stochastic Lotka-Volterra model, Journal of Mathematical Analysis and Applications, 287 (2003), 141-156.  doi: 10.1016/S0022-247X(03)00539-0.

[22]

J. D. Murray, Mathematical Biology, Springer New york, 1993. doi: 10.1007/b98869.

[23]

R. RakkiyappanA. ChandrasekarF. A. Rihan and S. Lakshmanan, Exponential state estimation of Markovian jumping genetic regulatory networks with mode-dependent probabilistic time-varying delays, Mathematical Biosciences, 25 (2014), 30-53.  doi: 10.1016/j.mbs.2014.02.008.

[24]

R RakkiyappanG. VelmuruganF. A. Rihan and and S. Lakshmanan, Stability analysis of memristor-based complex-valued recurrent neural networks with time delays, Complexity, 21 (2015), 14-39.  doi: 10.1002/cplx.21618.

[25]

F. A. RihanS. LakshmananA. H. HashishR. Rakkiyappan and E. Ahmed, Fractional-order delayed predator–prey systems with {Holling type-II} functional response, Nonlinear Dynamics, 80 (2015), 777-789.  doi: 10.1007/s11071-015-1905-8.

[26]

F. A. Rihan, H. J. Alsakaji and C. Rajivganthi, Stability and Hopf bifurcation of three-species prey-predator system with time delays and Allee effect, Complexity, 2020 (2020), 7306412. doi: 10.1155/2020/7306412.

[27]

F. A. RihanA. A. Azamov and H. J. Al-Sakaji, An inverse problem for delay differential equations: Parameter estimation, nonlinearity, sensitivity, Applied Mathematics & Information Sciences, 12 (2018), 63-74.  doi: 10.18576/amis/120106.

[28]

F. A. Rihan and H. J. Alsakaji, Persistence and extinction for stochastic delay differential model of prey-predator system with hunting cooperation in predators, Advances in Difference Equations, 124 (2020), 1-22.  doi: 10.1186/s13662-020-02579-z.

[29]

F.A. RihanH.J. Alsakaji and C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 2020 (2020), 1-20.  doi: 10.1186/s13662-020-02964-8.

[30]

F. A. Rihan, C. Rajivganthi and P. Muthukumar, Fractional stochastic differential equations with Hilfer fractional derivative: Poisson jumps and optimal control, Discrete Dynamics in Nature and Society, 2017 (2017), Art. ID 5394528, 11 pp. doi: 10.1155/2017/5394528.

[31]

T. Saha and M. Bandyopadhyay, Dynamical analysis of a delayed ratio-dependent prey–predator model within fluctuating environment, Applied Mathematics and Computation, 196 (2008), 458-478.  doi: 10.1016/j.amc.2007.06.017.

[32]

G. TangS. Tang and R. A. Cheke, Global analysis of a holling type II predator–prey model with a constant prey refuge, Nonlinear Dynamics, 76 (2014), 635-647.  doi: 10.1007/s11071-013-1157-4.

[33]

D. A. Vasseuri and P. Yodzis, The color of environmental noise, Ecology, 85 (2004), 1146-1152. 

[34]

V. Volterra, Variazioni e Fluttuazioni Del Numero D'individui in Specie Animali Conviventi, C. Ferrari, 1927.

[35]

X. MaoC. Yuan and J. Zou, Stochastic differential delay equations of population dynamics, Journal of Mathematical Analysis and Applications, 304 (2005), 296-320.  doi: 10.1016/j.jmaa.2004.09.027.

[36]

X. Zhao and Z. Zeng, Stationary distribution and extinction of a stochastic ratio-dependent predator–prey system with stage structure for the predator, Physica A: Statistical Mechanics and its Applications, 545 (2020), 123310, 17 pp. doi: 10.1016/j.physa.2019.123310.

Figure 1.  Shows numerical simulations of deterministic DDEs (1) (left) and SDDEs (2) (right), when $ \tau_1 = 1.25 $, $ \tau_2 = 0.6 $ and $ \tau_3 = 0.5 $, with noise intensities $ \sigma_1^2 = 0.08 $, $ \sigma_2^2 = 0.1 $, $ \sigma_3^2 = 0.06 $, and parameter values: $ r_1 = 0.2 $, $ r_2 = 0.6 $, $ K_1 = 0.7 $, $ K_2 = 0.8 $, $ \alpha_1 = 0.3 $, $ \alpha_2 = 0.6 $, $ \alpha_3 = 0.8 $, $ \beta = 0.1 $, $ \delta = 0.8 $, $ a_1 = 1 $, $ a_2 = 1.4 $. For $ {\mathcal R}_0^s>1 $, the stochastic model has a unique ergodic stationary distribution $ \pi(.) $ of stochastic system (2)
Figure 2.  Numerical simulations of deterministic DDEs (1) (left) and SDDEs (2) (right), with parameter values given in Example 2, with noise intensities: $ \sigma_1^2 = 0.03 $, $ \sigma_2^2 = 0.02 $ and $ \sigma_3^2 = 1.4 $. When $ {\mathcal R}_0^s<1 $, we can clearly see that the predator goes to extinct
Figure 3.  Shows numerical simulations of deterministic DDEs (1) (left) and SDDEs (2) (right), with the same parameter values of Figure 2, but with noise intensities $ \sigma_1^2 = 1.2 $, $ \sigma_2^2 = 1.2 $ and $ \sigma_3^2 = 0.5 $. When $ r_1<\frac{\sigma_1^2}{2} $, $ r_2<\frac{\sigma_2^2}{2} $ and $ {\mathcal R}_0^s<1 $, we can clearly see that all the species goes to extinct. A strong intensity of noise can be a cause for extinction of the prey species, which will also drive predator population to extinct
Figure 4.  Numerical simulations of deterministic DDEs (1) (left) and SDDEs (2) (right), with parameter values of Figure 1, but with $ \tau_1 = 10 $, $ \tau_2 = 0.1 $ and $ \tau_3 = 0.1 $, under the noise intensities $ \sigma_1^2 = 0.2 $, $ \sigma_2^2 = 0.2 $ and $ \sigma_3^2 = 0.2 $. Clearly, time-delays can lead to Hopf-type bifurcations of deterministic systems
Figure 5.  Shows the effect of white noise to prevent the explosion of the population. When $ \beta = 0.5 $, with the same parameter values of Figure 1, there is an explosion of population with deterministic model (left); While the noise prevent such explosion of the population (right)
Table 1.  One biological meaning for the parameters of model (2)
Parameters Description
$ r_1 $, $ r_2 $ intrinsic growth rate for x and y
$ k_1 $, $ k_2 $ carrying capacity for x and y
$ \alpha_1 $, $ \alpha_2 $ rate of predation of preys x and y
$ \beta $ rate of cooperation of preys x and y against predator z
$ \delta $ Predator death rate
$ \alpha_3 $ rate of intra-species competition within the predators
$ a_1 $, $ a_2 $ transformation rate of predator to preys $ x $ and $ y $.
Parameters Description
$ r_1 $, $ r_2 $ intrinsic growth rate for x and y
$ k_1 $, $ k_2 $ carrying capacity for x and y
$ \alpha_1 $, $ \alpha_2 $ rate of predation of preys x and y
$ \beta $ rate of cooperation of preys x and y against predator z
$ \delta $ Predator death rate
$ \alpha_3 $ rate of intra-species competition within the predators
$ a_1 $, $ a_2 $ transformation rate of predator to preys $ x $ and $ y $.
[1]

Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129

[2]

Xiaoling Zou, Dejun Fan, Ke Wang. Stationary distribution and stochastic Hopf bifurcation for a predator-prey system with noises. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1507-1519. doi: 10.3934/dcdsb.2013.18.1507

[3]

Li Zu, Daqing Jiang, Donal O'Regan. Persistence and stationary distribution of a stochastic predator-prey model under regime switching. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2881-2897. doi: 10.3934/dcds.2017124

[4]

Isam Al-Darabsah, Xianhua Tang, Yuan Yuan. A prey-predator model with migrations and delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (3) : 737-761. doi: 10.3934/dcdsb.2016.21.737

[5]

Sampurna Sengupta, Pritha Das, Debasis Mukherjee. Stochastic non-autonomous Holling type-Ⅲ prey-predator model with predator's intra-specific competition. Discrete and Continuous Dynamical Systems - B, 2018, 23 (8) : 3275-3296. doi: 10.3934/dcdsb.2018244

[6]

Chengjun Guo, Chengxian Guo, Sameed Ahmed, Xinfeng Liu. Moment stability for nonlinear stochastic growth kinetics of breast cancer stem cells with time-delays. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2473-2489. doi: 10.3934/dcdsb.2016056

[7]

Kexin Wang. Influence of feedback controls on the global stability of a stochastic predator-prey model with Holling type Ⅱ response and infinite delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1699-1714. doi: 10.3934/dcdsb.2019247

[8]

Yanan Zhao, Yuguo Lin, Daqing Jiang, Xuerong Mao, Yong Li. Stationary distribution of stochastic SIRS epidemic model with standard incidence. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2363-2378. doi: 10.3934/dcdsb.2016051

[9]

Meng Liu, Chuanzhi Bai, Yi Jin. Population dynamical behavior of a two-predator one-prey stochastic model with time delay. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2513-2538. doi: 10.3934/dcds.2017108

[10]

Meng Zhao, Wan-Tong Li, Jia-Feng Cao. A prey-predator model with a free boundary and sign-changing coefficient in time-periodic environment. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3295-3316. doi: 10.3934/dcdsb.2017138

[11]

R. P. Gupta, Peeyush Chandra, Malay Banerjee. Dynamical complexity of a prey-predator model with nonlinear predator harvesting. Discrete and Continuous Dynamical Systems - B, 2015, 20 (2) : 423-443. doi: 10.3934/dcdsb.2015.20.423

[12]

Malay Banerjee, Nayana Mukherjee, Vitaly Volpert. Prey-predator model with nonlocal and global consumption in the prey dynamics. Discrete and Continuous Dynamical Systems - S, 2020, 13 (8) : 2109-2120. doi: 10.3934/dcdss.2020180

[13]

Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75

[14]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Amelia G. Nobile. A non-autonomous stochastic predator-prey model. Mathematical Biosciences & Engineering, 2014, 11 (2) : 167-188. doi: 10.3934/mbe.2014.11.167

[15]

Guirong Jiang, Qishao Lu. The dynamics of a Prey-Predator model with impulsive state feedback control. Discrete and Continuous Dynamical Systems - B, 2006, 6 (6) : 1301-1320. doi: 10.3934/dcdsb.2006.6.1301

[16]

Xinfu Chen, Yuanwei Qi, Mingxin Wang. Steady states of a strongly coupled prey-predator model. Conference Publications, 2005, 2005 (Special) : 173-180. doi: 10.3934/proc.2005.2005.173

[17]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[18]

Mingxin Wang, Peter Y. H. Pang. Qualitative analysis of a diffusive variable-territory prey-predator model. Discrete and Continuous Dynamical Systems, 2009, 23 (3) : 1061-1072. doi: 10.3934/dcds.2009.23.1061

[19]

Baoquan Zhou, Yucong Dai. Stationary distribution, extinction, density function and periodicity of an n-species competition system with infinite distributed delays and nonlinear perturbations. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022078

[20]

Rui Xu, M.A.J. Chaplain, F.A. Davidson. Periodic solutions of a discrete nonautonomous Lotka-Volterra predator-prey model with time delays. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 823-831. doi: 10.3934/dcdsb.2004.4.823

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (464)
  • HTML views (534)
  • Cited by (0)

Other articles
by authors

[Back to Top]