-
Previous Article
The algorithmic numbers in non-archimedean numerical computing environments
- DCDS-S Home
- This Issue
-
Next Article
On a class of semipositone problems with singular Trudinger-Moser nonlinearities
Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms
Hubei Key Laboratory of Mathematical Sciences & School of Mathematics and Statistics, Central China Normal University, Wuhan, 430079, China |
$ {\dot{H}}^s( \mathbb{R}^{n})\times {\dot{H}}^s( \mathbb{R}^{n}) $ |
$ {D}^{1, p}( \mathbb{R}^{n})\times{D}^{1, p}( \mathbb{R}^{n}) $ |
$ {\dot{H}}^s( \mathbb{R}^{n})\!\times\! {\dot{H}}^s( \mathbb{R}^{n}) $ |
$ C\! = \!C(n, s, \alpha, \eta_1, \eta_2)\!>\!0 $ |
$ (u, v) \!\in\! {\dot{H}}^s( \mathbb{R}^{n})\!\times\! {\dot{H}}^s( \mathbb{R}^{n}) $ |
$ p\!\in\![2, 2^*_{s}(\alpha)) $ |
$ \theta \!\in\! (\bar{\theta}, \frac{2\eta_1}{2^*_{s}(\alpha)}) $ |
$ \Big( \int_{ \mathbb{R}^{n} } \frac{ |u|^{\eta_1} |v|^{\eta_2} } { |y|^{\alpha} } dy \Big)^{ \frac{1}{ 2^*_{s} (\alpha) }} \nonumber \\ \!\leq\! C ||u||_{{\dot{H}}^s(\mathbb{R}^{n})}^{\frac{\theta}{2}} ||v||_{{\dot{H}}^s(\mathbb{R}^{n})}^{\frac{\theta}{2}+\frac{\eta_2-\eta_1}{2^*_{s} (\alpha)}} ||(uv)||^{\frac{\eta_1}{2^*_{s} (\alpha)}-\frac{\theta}{2}}_{ L^{\frac{p}{2}, \frac{p}{2}(n-2s+r)}(\mathbb{R}^{n}, |y|^{-\frac{p}{2}r}) }, ~~~~(1)$ |
$ s \!\in\! (0, 1) $ |
$ 0\!<\!\alpha\!<\!2s\!<\!n $ |
$ \eta_1\!+\!\eta_2\! = \!2^*_{s}(\alpha)\!: = \!\frac{2(n-\alpha)}{n-2s} $ |
$ 1\!<\!\eta_1\!\leq\!\eta_2\!<\!\eta_1\!+\!\frac{\alpha}{s} $ |
$ \bar{\theta}\! = \!\max \Big\{ \frac{2}{2^*_{s}(\alpha)}, \frac{2\eta_1}{2^*_{s}(\alpha)} -\frac{2t(\frac{\alpha}{2s}-\frac{\alpha}{n})}{2^*_{s}(\alpha) -\frac{2\alpha}{n}}\Big\} $ |
$ t\! = \!1\!-\!\frac{(\eta_2-\eta_1)s}{\alpha} $ |
$ r\! = \!\frac{2\alpha}{ 2^*_{s}(\alpha) } $ |
$ {D}^{1, p}( \mathbb{R}^{n})\!\times\!{D}^{1, p}( \mathbb{R}^{n}) $ |
$ {\dot{H}}^s( \mathbb{R}^{n}) $ |
$ {D}^{1, p}( \mathbb{R}^{n}) $ |
$ {\dot{H}}^s( \mathbb{R}^{n})\times {\dot{H}}^s( \mathbb{R}^{n}) $ |
$ {D}^{1, p}( \mathbb{R}^{n})\times{D}^{1, p}( \mathbb{R}^{n}) $ |
References:
[1] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
R. B. Assuncao, J. C. Silva and O. H. Miyagaki, A fractional p-Laplacian problem with mul-tiple critical Hardy-Sobolev nonlinearities, Milan J. Math., 88 (2020), 65–97. arXiv: 1906.07227.
doi: 10.1007/s00032-020-00308-5. |
[3] |
J. Bellazzini, M. Ghimenti, C. Mercuri, V. Moroz and J. V. Schaftingen,
Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. Amer. Math. Soc., 370 (2018), 8285-8310.
doi: 10.1090/tran/7426. |
[4] |
H. Brezis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.1090/S0002-9939-1983-0699419-3. |
[5] |
L. Caffarelli, Non-local diffusions, drifts and games, in: Nonlinear Partial Differential Equations, Abel Symposia No. 7, Springer, Heidelberg, 2012, 37–52.
doi: 10.1007/978-3-642-25361-4_3. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
F. Catrina and Z.-Q. Wang,
On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and simmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.
doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. |
[8] |
W. Chen, Fractional elliptic problems with two critical Sobolev-Hardy exponents, Electron. J. Differential Equations, 2018 (2018). |
[9] |
Z. Chen and W. Zou,
Existence and symmetry of positive ground states for a doubly critical Schrödinger system, Trans. Amer. Math. Soc., 367 (2015), 3599-3646.
doi: 10.1090/S0002-9947-2014-06237-5. |
[10] |
J.-L. Chern and C.-S. Lin,
Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Ration. Mech. Anal., 197 (2010), 401-432.
doi: 10.1007/s00205-009-0269-y. |
[11] |
G. Difazio and M. A. Ragusa,
Interior Estimates in Morrey Spaces for Strong Solutions to Nondivergence Form Equations with Discontinuous Coefficients, J. Funct. Anal., 112 (1993), 241-256.
doi: 10.1006/jfan.1993.1032. |
[12] |
S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 99, 29 pp.
doi: 10.1007/s00526-016-1032-5. |
[13] |
R. Filippucci, P. Pucci and F. Robert,
On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177.
doi: 10.1016/j.matpur.2008.09.008. |
[14] |
R. L. Frank, E. H. Lieb and R. Seiringer,
Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.
doi: 10.1090/S0894-0347-07-00582-6. |
[15] |
N. Ghoussoub and S. Shakerian,
Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555.
doi: 10.1515/ans-2015-0302. |
[16] |
N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Mathematical Surveys and Monographs, vol. 187, Amer. Math. Soc., Providence, RI, 2013.
doi: 10.1090/surv/187. |
[17] |
N. Ghoussoub and F. Robert, The Hardy-Schr$\ddot{o}$dinger operator with interior singularity: The remaining cases, Calc. Var. Partial Differ. Equ., 56 (2017).
doi: 10.1007/s00526-017-1238-1. |
[18] |
N. Ghoussoub and C. Yuan,
Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.
doi: 10.1090/S0002-9947-00-02560-5. |
[19] |
T. Gou and L. Jeanjean,
Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity, 31 (2018), 2319-2345.
doi: 10.1088/1361-6544/aab0bf. |
[20] |
Y. Huang and D. Kang,
On the singular elliptic systems involving multiple critical Sobolev exponents, Nonlinear Anal., 74 (2011), 400-412.
doi: 10.1016/j.na.2010.08.051. |
[21] |
D. Kang and G. Li,
On the elliptic problems involving multi-singular inverse square potentials and multi-critical Sobolev-Hardy exponents, Nonlinear Anal., 66 (2007), 1806-1816.
doi: 10.1016/j.na.2006.02.026. |
[22] |
A. E. Khalil, S. Kellati and A. Touzani,
On the principal frequency curve of the p-biharmonic operator, Arab J. Math. Sci., 17 (2011), 89-99.
doi: 10.1016/j.ajmsc.2011.01.002. |
[23] |
Y. Komori and S. Shirai,
Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219-231.
doi: 10.1002/mana.200610733. |
[24] |
G. Li and T. Yang, The existence of a nontrivial weak solution to a double critical problem involving fractional Laplacian in ${ \mathbb{R}}^n$ with a Hardy term, Acta Math. Sci. Ser. B (Engl. Ed.), 40 (2020), 1808–1830. arXiv: 1908.02536.
doi: 10.1007/s10473-020-0613-8. |
[25] |
E. H. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, Volume 14 of Graduate Studies in Mathematics, Amer. Math. Soc., 2001.
doi: 10.1090/gsm/014. |
[26] |
L. D'Ambrosio and E. Jannelli,
Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differ. Equ., 54 (2015), 365-396.
doi: 10.1007/s00526-014-0789-7. |
[27] |
A. L. Mazzucato,
Besov-Morrey spaces: Function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355 (2003), 1297-1364.
doi: 10.1090/S0002-9947-02-03214-2. |
[28] |
C. Mercuri, V. Moroz and J. V. Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differ. Equ., 55 (2016).
doi: 10.1007/s00526-016-1079-3. |
[29] |
C. B. Morrey,
On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
doi: 10.1090/S0002-9947-1938-1501936-8. |
[30] |
B. Muckenhoupt and R. Wheeden,
Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.
doi: 10.1090/S0002-9947-1974-0340523-6. |
[31] |
E. D. Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[32] |
G. Palatucci and A. Pisante,
Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50 (2014), 799-829.
doi: 10.1007/s00526-013-0656-y. |
[33] |
S. Rastegarzadeh, N. Nyamoradi and V. Ambrosio,
Existence and multiplicity of solutions for Hardy nonlocal fractional elliptic equations involving critical nonlinearities, J. Fixed Point Theory Appl., 21 (2019), 1-22.
doi: 10.1007/s11784-018-0653-z. |
[34] |
Y. Sawano,
Generalized Morrey spaces for non-doubling measures, Nonlinear Differ. Equ. Appl., 15 (2008), 413-425.
doi: 10.1007/s00030-008-6032-5. |
[35] |
E. Sawyer and R. L. Wheeden,
Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874.
doi: 10.2307/2374799. |
[36] |
R. Servadei and E. Raffaella,
Variational methods for non-local operators of eliliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
doi: 10.3934/dcds.2013.33.2105. |
[37] |
Y. Su, H. Chen, S. Liu and G. Che, Ground state solution of p-Laplacian equation with finite many critical nonlinearities, Complex Var. Elliptic Equ., 65 (2020).
doi: 10.1080/17476933.2020.1720005. |
[38] |
Y. Wang and Y. Shen,
Nonlinear biharmonic equations with Hardy potential and critical parameter, J. Math. Anal. Appl., 355 (2009), 649-660.
doi: 10.1016/j.jmaa.2009.01.076. |
[39] |
J. Wang and J. Shi, Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Differ. Equ., 56 (2017).
doi: 10.1007/s00526-017-1268-8. |
[40] |
L. Wang, B. Zhang and H. Zhang,
Fractional Laplacian system involving doubly critical nonlinearities in $ \mathbb{R}^N$, Electron. J. Qual. Theory Differ. Equ., 57 (2017), 1-17.
doi: 10.14232/ejqtde.2017.1.57. |
[41] |
J. Yang,
Fractional Hardy-Sobolev inequality in $ \mathbb{R}^N$, Nonlinear Anal., 119 (2015), 179-185.
doi: 10.1016/j.na.2014.09.009. |
[42] |
J. Yang and F. Wu,
Doubly critical problems involving fractional Laplacians in ${ \mathbb{R}}^N$, Adv. Nonlinear Stud., 17 (2017), 677-690.
doi: 10.1515/ans-2016-6012. |
show all references
References:
[1] |
A. Ambrosetti and P. H. Rabinowitz,
Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
doi: 10.1016/0022-1236(73)90051-7. |
[2] |
R. B. Assuncao, J. C. Silva and O. H. Miyagaki, A fractional p-Laplacian problem with mul-tiple critical Hardy-Sobolev nonlinearities, Milan J. Math., 88 (2020), 65–97. arXiv: 1906.07227.
doi: 10.1007/s00032-020-00308-5. |
[3] |
J. Bellazzini, M. Ghimenti, C. Mercuri, V. Moroz and J. V. Schaftingen,
Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. Amer. Math. Soc., 370 (2018), 8285-8310.
doi: 10.1090/tran/7426. |
[4] |
H. Brezis and E. Lieb,
A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.
doi: 10.1090/S0002-9939-1983-0699419-3. |
[5] |
L. Caffarelli, Non-local diffusions, drifts and games, in: Nonlinear Partial Differential Equations, Abel Symposia No. 7, Springer, Heidelberg, 2012, 37–52.
doi: 10.1007/978-3-642-25361-4_3. |
[6] |
L. Caffarelli and L. Silvestre,
An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations, 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306. |
[7] |
F. Catrina and Z.-Q. Wang,
On the Caffarelli-Kohn-Nirenberg inequalities: sharp constants, existence (and nonexistence), and simmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.
doi: 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I. |
[8] |
W. Chen, Fractional elliptic problems with two critical Sobolev-Hardy exponents, Electron. J. Differential Equations, 2018 (2018). |
[9] |
Z. Chen and W. Zou,
Existence and symmetry of positive ground states for a doubly critical Schrödinger system, Trans. Amer. Math. Soc., 367 (2015), 3599-3646.
doi: 10.1090/S0002-9947-2014-06237-5. |
[10] |
J.-L. Chern and C.-S. Lin,
Minimizers of Caffarelli-Kohn-Nirenberg inequalities with the singularity on the boundary, Arch. Ration. Mech. Anal., 197 (2010), 401-432.
doi: 10.1007/s00205-009-0269-y. |
[11] |
G. Difazio and M. A. Ragusa,
Interior Estimates in Morrey Spaces for Strong Solutions to Nondivergence Form Equations with Discontinuous Coefficients, J. Funct. Anal., 112 (1993), 241-256.
doi: 10.1006/jfan.1993.1032. |
[12] |
S. Dipierro, L. Montoro, I. Peral and B. Sciunzi, Qualitative properties of positive solutions to nonlocal critical problems involving the Hardy-Leray potential, Calc. Var. Partial Differ. Equ., 55 (2016), Art. 99, 29 pp.
doi: 10.1007/s00526-016-1032-5. |
[13] |
R. Filippucci, P. Pucci and F. Robert,
On a $p$-Laplace equation with multiple critical nonlinearities, J. Math. Pures Appl., 91 (2009), 156-177.
doi: 10.1016/j.matpur.2008.09.008. |
[14] |
R. L. Frank, E. H. Lieb and R. Seiringer,
Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, J. Amer. Math. Soc., 21 (2008), 925-950.
doi: 10.1090/S0894-0347-07-00582-6. |
[15] |
N. Ghoussoub and S. Shakerian,
Borderline variational problems involving fractional Laplacians and critical singularities, Adv. Nonlinear Stud., 15 (2015), 527-555.
doi: 10.1515/ans-2015-0302. |
[16] |
N. Ghoussoub and A. Moradifam, Functional Inequalities: New Perspectives and New Applications, Mathematical Surveys and Monographs, vol. 187, Amer. Math. Soc., Providence, RI, 2013.
doi: 10.1090/surv/187. |
[17] |
N. Ghoussoub and F. Robert, The Hardy-Schr$\ddot{o}$dinger operator with interior singularity: The remaining cases, Calc. Var. Partial Differ. Equ., 56 (2017).
doi: 10.1007/s00526-017-1238-1. |
[18] |
N. Ghoussoub and C. Yuan,
Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.
doi: 10.1090/S0002-9947-00-02560-5. |
[19] |
T. Gou and L. Jeanjean,
Multiple positive normalized solutions for nonlinear Schrödinger systems, Nonlinearity, 31 (2018), 2319-2345.
doi: 10.1088/1361-6544/aab0bf. |
[20] |
Y. Huang and D. Kang,
On the singular elliptic systems involving multiple critical Sobolev exponents, Nonlinear Anal., 74 (2011), 400-412.
doi: 10.1016/j.na.2010.08.051. |
[21] |
D. Kang and G. Li,
On the elliptic problems involving multi-singular inverse square potentials and multi-critical Sobolev-Hardy exponents, Nonlinear Anal., 66 (2007), 1806-1816.
doi: 10.1016/j.na.2006.02.026. |
[22] |
A. E. Khalil, S. Kellati and A. Touzani,
On the principal frequency curve of the p-biharmonic operator, Arab J. Math. Sci., 17 (2011), 89-99.
doi: 10.1016/j.ajmsc.2011.01.002. |
[23] |
Y. Komori and S. Shirai,
Weighted Morrey spaces and a singular integral operator, Math. Nachr., 282 (2009), 219-231.
doi: 10.1002/mana.200610733. |
[24] |
G. Li and T. Yang, The existence of a nontrivial weak solution to a double critical problem involving fractional Laplacian in ${ \mathbb{R}}^n$ with a Hardy term, Acta Math. Sci. Ser. B (Engl. Ed.), 40 (2020), 1808–1830. arXiv: 1908.02536.
doi: 10.1007/s10473-020-0613-8. |
[25] |
E. H. Lieb and M. Loss, Analysis, 2$^{nd}$ edition, Volume 14 of Graduate Studies in Mathematics, Amer. Math. Soc., 2001.
doi: 10.1090/gsm/014. |
[26] |
L. D'Ambrosio and E. Jannelli,
Nonlinear critical problems for the biharmonic operator with Hardy potential, Calc. Var. Partial Differ. Equ., 54 (2015), 365-396.
doi: 10.1007/s00526-014-0789-7. |
[27] |
A. L. Mazzucato,
Besov-Morrey spaces: Function space theory and applications to non-linear PDE, Trans. Amer. Math. Soc., 355 (2003), 1297-1364.
doi: 10.1090/S0002-9947-02-03214-2. |
[28] |
C. Mercuri, V. Moroz and J. V. Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency, Calc. Var. Partial Differ. Equ., 55 (2016).
doi: 10.1007/s00526-016-1079-3. |
[29] |
C. B. Morrey,
On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126-166.
doi: 10.1090/S0002-9947-1938-1501936-8. |
[30] |
B. Muckenhoupt and R. Wheeden,
Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc., 192 (1974), 261-274.
doi: 10.1090/S0002-9947-1974-0340523-6. |
[31] |
E. D. Nezza, G. Palatucci and E. Valdinoci,
Hitchhikers guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004. |
[32] |
G. Palatucci and A. Pisante,
Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces, Calc. Var. Partial Differ. Equ., 50 (2014), 799-829.
doi: 10.1007/s00526-013-0656-y. |
[33] |
S. Rastegarzadeh, N. Nyamoradi and V. Ambrosio,
Existence and multiplicity of solutions for Hardy nonlocal fractional elliptic equations involving critical nonlinearities, J. Fixed Point Theory Appl., 21 (2019), 1-22.
doi: 10.1007/s11784-018-0653-z. |
[34] |
Y. Sawano,
Generalized Morrey spaces for non-doubling measures, Nonlinear Differ. Equ. Appl., 15 (2008), 413-425.
doi: 10.1007/s00030-008-6032-5. |
[35] |
E. Sawyer and R. L. Wheeden,
Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math., 114 (1992), 813-874.
doi: 10.2307/2374799. |
[36] |
R. Servadei and E. Raffaella,
Variational methods for non-local operators of eliliptic type, Discrete Contin. Dyn. Syst., 33 (2013), 2105-2137.
doi: 10.3934/dcds.2013.33.2105. |
[37] |
Y. Su, H. Chen, S. Liu and G. Che, Ground state solution of p-Laplacian equation with finite many critical nonlinearities, Complex Var. Elliptic Equ., 65 (2020).
doi: 10.1080/17476933.2020.1720005. |
[38] |
Y. Wang and Y. Shen,
Nonlinear biharmonic equations with Hardy potential and critical parameter, J. Math. Anal. Appl., 355 (2009), 649-660.
doi: 10.1016/j.jmaa.2009.01.076. |
[39] |
J. Wang and J. Shi, Standing waves for a coupled nonlinear Hartree equations with nonlocal interaction, Calc. Var. Partial Differ. Equ., 56 (2017).
doi: 10.1007/s00526-017-1268-8. |
[40] |
L. Wang, B. Zhang and H. Zhang,
Fractional Laplacian system involving doubly critical nonlinearities in $ \mathbb{R}^N$, Electron. J. Qual. Theory Differ. Equ., 57 (2017), 1-17.
doi: 10.14232/ejqtde.2017.1.57. |
[41] |
J. Yang,
Fractional Hardy-Sobolev inequality in $ \mathbb{R}^N$, Nonlinear Anal., 119 (2015), 179-185.
doi: 10.1016/j.na.2014.09.009. |
[42] |
J. Yang and F. Wu,
Doubly critical problems involving fractional Laplacians in ${ \mathbb{R}}^N$, Adv. Nonlinear Stud., 17 (2017), 677-690.
doi: 10.1515/ans-2016-6012. |
[1] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[2] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[3] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 697-735. doi: 10.3934/cpaa.2020286 |
[4] |
Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268 |
[5] |
Ferenc Weisz. Dual spaces of mixed-norm martingale Hardy spaces. Communications on Pure & Applied Analysis, 2021, 20 (2) : 681-695. doi: 10.3934/cpaa.2020285 |
[6] |
Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075 |
[7] |
Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020445 |
[8] |
Zaizheng Li, Qidi Zhang. Sub-solutions and a point-wise Hopf's lemma for fractional $ p $-Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (2) : 835-865. doi: 10.3934/cpaa.2020293 |
[9] |
Dmitry Dolgopyat. The work of Sébastien Gouëzel on limit theorems and on weighted Banach spaces. Journal of Modern Dynamics, 2020, 16: 351-371. doi: 10.3934/jmd.2020014 |
[10] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[11] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[12] |
Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365 |
[13] |
Hongfei Yang, Xiaofeng Ding, Raymond Chan, Hui Hu, Yaxin Peng, Tieyong Zeng. A new initialization method based on normed statistical spaces in deep networks. Inverse Problems & Imaging, 2021, 15 (1) : 147-158. doi: 10.3934/ipi.2020045 |
[14] |
Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306 |
[15] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[16] |
Fuensanta Andrés, Julio Muñoz, Jesús Rosado. Optimal design problems governed by the nonlocal $ p $-Laplacian equation. Mathematical Control & Related Fields, 2021, 11 (1) : 119-141. doi: 10.3934/mcrf.2020030 |
[17] |
Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020403 |
[18] |
Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021002 |
[19] |
Yutong Chen, Jiabao Su. Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021007 |
[20] |
Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]