
-
Previous Article
Abundant novel solutions of the conformable Lakshmanan-Porsezian-Daniel model
- DCDS-S Home
- This Issue
-
Next Article
The Sobolev-Morawetz approach for the energy scattering of nonlinear Schrödinger-type equations with radial data
Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound
1. | Department of Basic Sciences, Deanship of Preparatory Year and Supporting Studies, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 34212, Saudi Arabia |
2. | UR ANALYSE NON-LINÉAIRE ET GÉOMETRIE, UR13ES32 Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El-Manar 2092 El Manar II, Tunisia |
3. | UR ANALYSE NON-LINÉAIRE ET GÉOMETRIE, UR13ES32 ESPRIT School of Engineering. 1, 2 rue André Ampère 2083 - Pôle Technologique, El Ghazala |
We consider in this article a nonlinear vibrating Timoshenko system with thermoelasticity with second sound. We first recall the results obtained in [
References:
[1] |
K. Ammari, A. Bchatnia and K. El Mufti,
Non-uniform decay of the energy of some dissipative evolution systems, Z. Anal. Anwend., 36 (2017), 239-251.
doi: 10.4171/ZAA/1587. |
[2] |
M. A. Ayadi, A. Bchatnia, M. Hamouda and S. Messaoudi,
General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4 (2015), 263-284.
doi: 10.1515/anona-2015-0038. |
[3] |
A. Bchatnia, S. Chebbi, M. Hamouda and A. Soufyane,
Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity, Asymptot. Anal., 114 (2019), 73-91.
doi: 10.3233/ASY-191519. |
[4] |
S. Chebbi and M. Hamouda, Discrete energy behavior of a damped Timoshenko system, Comput. Appl. Math., 39 (2020), Paper No. 4, 19 pp.
doi: 10.1007/s40314-019-0982-6. |
[5] |
H. D. Fernández Sare and R. Racke,
On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2. |
[6] |
Z. Gao and S. Xie,
Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004. |
[7] |
A. Guesmia and S. A. Messaoudi,
General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122.
doi: 10.1002/mma.1125. |
[8] |
A. Guesmia and and S. A. Messaoudi,
On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Compt., 206 (2008), 589-597.
doi: 10.1016/j.amc.2008.05.122. |
[9] |
M. S. Ismail and F. Mosally, A fourth order finite difference method for the good Boussinesq equation, Abstr. Appl. Anal., (2014), Art. ID 323260, 10 pp.
doi: 10.1155/2014/323260. |
[10] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[11] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[12] |
S. A. Messaoudi and M. I. Mustafa,
On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047. |
[13] |
S. A. Messaoudi, M. Pokojovy and B. Said-Houari,
Nonlinear damped Timoshenko systems with second sound–global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534.
doi: 10.1002/mma.1049. |
[14] |
S. A. Messaoudi and A. Soufyane,
Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.
doi: 10.1016/j.na.2006.08.039. |
[15] |
J. E. Muñoz Rivera and R. Racke,
Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5. |
[16] |
B. V. Numerov,
A method of extrapolation of perturbations, Monthly Notices of the Royal Astronomical Society., 84 (1924), 592-601.
doi: 10.1093/mnras/84.8.592. |
[17] |
B. V. Numerov,
Note on the numerical integration of $d^2x/dt^2 = f(x,t)$, Astronomische Nachrichten, 230 (1927), 359-364.
doi: 10.1002/asna.19272301903. |
[18] |
C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila and M. L. Santos, Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback, International Journal of Analysis and Applications., 3 (2013), 1-13. Google Scholar |
[19] |
D. M. Serre, Theory and applications, Translated from the 2001 French original. Graduate Texts in Mathematics., 216. Springer-Verlag, New York, 2002. |
[20] |
A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations., (2003), No. 29, 14 pp. |
[21] |
B. Wang, T. Sun and D. Liang,
The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98-117.
doi: 10.1016/j.cam.2019.01.036. |
[22] |
E. Zauderer, Partial Differential Equations of Applied Mathematics, Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, Hoboken, NJ., 2006.
doi: 10.1002/9781118033302. |
show all references
References:
[1] |
K. Ammari, A. Bchatnia and K. El Mufti,
Non-uniform decay of the energy of some dissipative evolution systems, Z. Anal. Anwend., 36 (2017), 239-251.
doi: 10.4171/ZAA/1587. |
[2] |
M. A. Ayadi, A. Bchatnia, M. Hamouda and S. Messaoudi,
General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4 (2015), 263-284.
doi: 10.1515/anona-2015-0038. |
[3] |
A. Bchatnia, S. Chebbi, M. Hamouda and A. Soufyane,
Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity, Asymptot. Anal., 114 (2019), 73-91.
doi: 10.3233/ASY-191519. |
[4] |
S. Chebbi and M. Hamouda, Discrete energy behavior of a damped Timoshenko system, Comput. Appl. Math., 39 (2020), Paper No. 4, 19 pp.
doi: 10.1007/s40314-019-0982-6. |
[5] |
H. D. Fernández Sare and R. Racke,
On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2. |
[6] |
Z. Gao and S. Xie,
Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004. |
[7] |
A. Guesmia and S. A. Messaoudi,
General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122.
doi: 10.1002/mma.1125. |
[8] |
A. Guesmia and and S. A. Messaoudi,
On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Compt., 206 (2008), 589-597.
doi: 10.1016/j.amc.2008.05.122. |
[9] |
M. S. Ismail and F. Mosally, A fourth order finite difference method for the good Boussinesq equation, Abstr. Appl. Anal., (2014), Art. ID 323260, 10 pp.
doi: 10.1155/2014/323260. |
[10] |
J. U. Kim and Y. Renardy,
Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078. |
[11] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994. |
[12] |
S. A. Messaoudi and M. I. Mustafa,
On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047. |
[13] |
S. A. Messaoudi, M. Pokojovy and B. Said-Houari,
Nonlinear damped Timoshenko systems with second sound–global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534.
doi: 10.1002/mma.1049. |
[14] |
S. A. Messaoudi and A. Soufyane,
Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.
doi: 10.1016/j.na.2006.08.039. |
[15] |
J. E. Muñoz Rivera and R. Racke,
Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5. |
[16] |
B. V. Numerov,
A method of extrapolation of perturbations, Monthly Notices of the Royal Astronomical Society., 84 (1924), 592-601.
doi: 10.1093/mnras/84.8.592. |
[17] |
B. V. Numerov,
Note on the numerical integration of $d^2x/dt^2 = f(x,t)$, Astronomische Nachrichten, 230 (1927), 359-364.
doi: 10.1002/asna.19272301903. |
[18] |
C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila and M. L. Santos, Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback, International Journal of Analysis and Applications., 3 (2013), 1-13. Google Scholar |
[19] |
D. M. Serre, Theory and applications, Translated from the 2001 French original. Graduate Texts in Mathematics., 216. Springer-Verlag, New York, 2002. |
[20] |
A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations., (2003), No. 29, 14 pp. |
[21] |
B. Wang, T. Sun and D. Liang,
The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98-117.
doi: 10.1016/j.cam.2019.01.036. |
[22] |
E. Zauderer, Partial Differential Equations of Applied Mathematics, Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, Hoboken, NJ., 2006.
doi: 10.1002/9781118033302. |
[1] |
Lakmi Niwanthi Wadippuli, Ivan Gudoshnikov, Oleg Makarenkov. Global asymptotic stability of nonconvex sweeping processes. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1129-1139. doi: 10.3934/dcdsb.2019212 |
[2] |
M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 |
[3] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[4] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[5] |
Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109 |
[6] |
Zengyun Wang, Jinde Cao, Zuowei Cai, Lihong Huang. Finite-time stability of impulsive differential inclusion: Applications to discontinuous impulsive neural networks. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2677-2692. doi: 10.3934/dcdsb.2020200 |
[7] |
Sandrine Anthoine, Jean-François Aujol, Yannick Boursier, Clothilde Mélot. Some proximal methods for Poisson intensity CBCT and PET. Inverse Problems & Imaging, 2012, 6 (4) : 565-598. doi: 10.3934/ipi.2012.6.565 |
[8] |
Fumihiko Nakamura. Asymptotic behavior of non-expanding piecewise linear maps in the presence of random noise. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2457-2473. doi: 10.3934/dcdsb.2018055 |
[9] |
Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 |
[10] |
Rafael Luís, Sandra Mendonça. A note on global stability in the periodic logistic map. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4211-4220. doi: 10.3934/dcdsb.2020094 |
[11] |
Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems - A, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089 |
[12] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[13] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[14] |
Vassili Gelfreich, Carles Simó. High-precision computations of divergent asymptotic series and homoclinic phenomena. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 511-536. doi: 10.3934/dcdsb.2008.10.511 |
[15] |
Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009 |
[16] |
Zhi-Min Chen, Philip A. Wilson. Stability of oscillatory gravity wave trains with energy dissipation and Benjamin-Feir instability. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2329-2341. doi: 10.3934/dcdsb.2012.17.2329 |
[17] |
Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021023 |
[18] |
Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020210 |
[19] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[20] |
Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]