We consider in this article a nonlinear vibrating Timoshenko system with thermoelasticity with second sound. We first recall the results obtained in [
Citation: |
[1] |
K. Ammari, A. Bchatnia and K. El Mufti, Non-uniform decay of the energy of some dissipative evolution systems, Z. Anal. Anwend., 36 (2017), 239-251.
doi: 10.4171/ZAA/1587.![]() ![]() ![]() |
[2] |
M. A. Ayadi, A. Bchatnia, M. Hamouda and S. Messaoudi, General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal., 4 (2015), 263-284.
doi: 10.1515/anona-2015-0038.![]() ![]() ![]() |
[3] |
A. Bchatnia, S. Chebbi, M. Hamouda and A. Soufyane, Lower bound and optimality for a nonlinearly damped Timoshenko system with thermoelasticity, Asymptot. Anal., 114 (2019), 73-91.
doi: 10.3233/ASY-191519.![]() ![]() ![]() |
[4] |
S. Chebbi and M. Hamouda, Discrete energy behavior of a damped Timoshenko system, Comput. Appl. Math., 39 (2020), Paper No. 4, 19 pp.
doi: 10.1007/s40314-019-0982-6.![]() ![]() ![]() |
[5] |
H. D. Fernández Sare and R. Racke, On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., 194 (2009), 221-251.
doi: 10.1007/s00205-009-0220-2.![]() ![]() ![]() |
[6] |
Z. Gao and S. Xie, Fourth-order alternating direction implicit compact finite difference schemes for two-dimensional Schrödinger equations, Appl. Numer. Math., 61 (2011), 593-614.
doi: 10.1016/j.apnum.2010.12.004.![]() ![]() ![]() |
[7] |
A. Guesmia and S. A. Messaoudi, General energy decay estimates of Timoshenko systems with frictional versus viscoelastic damping, Math. Meth. Appl. Sci., 32 (2009), 2102-2122.
doi: 10.1002/mma.1125.![]() ![]() ![]() |
[8] |
A. Guesmia and and S. A. Messaoudi, On the control of a viscoelastic damped Timoshenko-type system, Appl. Math. Compt., 206 (2008), 589-597.
doi: 10.1016/j.amc.2008.05.122.![]() ![]() ![]() |
[9] |
M. S. Ismail and F. Mosally, A fourth order finite difference method for the good Boussinesq equation, Abstr. Appl. Anal., (2014), Art. ID 323260, 10 pp.
doi: 10.1155/2014/323260.![]() ![]() ![]() |
[10] |
J. U. Kim and Y. Renardy, Boundary control of the Timoshenko beam, SIAM J. Control Optim., 25 (1987), 1417-1429.
doi: 10.1137/0325078.![]() ![]() ![]() |
[11] |
V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, RAM: Research in Applied Mathematics. Masson, Paris; John Wiley & Sons, Ltd., Chichester, 1994.
![]() ![]() |
[12] |
S. A. Messaoudi and M. I. Mustafa, On the stabilization of the Timoshenko system by a weak nonlinear dissipation, Math. Meth. Appl. Sci., 32 (2009), 454-469.
doi: 10.1002/mma.1047.![]() ![]() ![]() |
[13] |
S. A. Messaoudi, M. Pokojovy and B. Said-Houari, Nonlinear damped Timoshenko systems with second sound–global existence and exponential stability, Math. Meth. Appl. Sci., 32 (2009), 505-534.
doi: 10.1002/mma.1049.![]() ![]() ![]() |
[14] |
S. A. Messaoudi and A. Soufyane, Boundary stabilization of solutions of a nonlinear system of Timoshenko type, Nonlinear Anal., 67 (2007), 2107-2121.
doi: 10.1016/j.na.2006.08.039.![]() ![]() ![]() |
[15] |
J. E. Muñoz Rivera and R. Racke, Mildly dissipative nonlinear Timoshenko systems-global existence and exponential stability, J. Math. Anal. Appl., 276 (2002), 248-278.
doi: 10.1016/S0022-247X(02)00436-5.![]() ![]() ![]() |
[16] |
B. V. Numerov, A method of extrapolation of perturbations, Monthly Notices of the Royal Astronomical Society., 84 (1924), 592-601.
doi: 10.1093/mnras/84.8.592.![]() ![]() |
[17] |
B. V. Numerov, Note on the numerical integration of $d^2x/dt^2 = f(x,t)$, Astronomische Nachrichten, 230 (1927), 359-364.
doi: 10.1002/asna.19272301903.![]() ![]() |
[18] |
C. A. Raposo, J. A. D. Chuquipoma, J. A. J. Avila and M. L. Santos, Exponential decay and numerical solution for a Timoshenko system with delay term in the internal feedback, International Journal of Analysis and Applications., 3 (2013), 1-13.
![]() |
[19] |
D. M. Serre, Theory and applications, Translated from the 2001 French original. Graduate Texts in Mathematics., 216. Springer-Verlag, New York, 2002.
![]() ![]() |
[20] |
A. Soufyane and A. Wehbe, Uniform stabilization for the Timoshenko beam by a locally distributed damping, Electron. J. Differential Equations., (2003), No. 29, 14 pp.
![]() ![]() |
[21] |
B. Wang, T. Sun and D. Liang, The conservative and fourth-order compact finite difference schemes for regularized long wave equation, J. Comput. Appl. Math., 356 (2019), 98-117.
doi: 10.1016/j.cam.2019.01.036.![]() ![]() ![]() |
[22] |
E. Zauderer, Partial Differential Equations of Applied Mathematics, Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, Hoboken, NJ., 2006.
doi: 10.1002/9781118033302.![]() ![]() ![]() |
Mesh of the domain