\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Equilibrium of immersed hyperelastic solids

  • * Corresponding author: Ulisse Stefanelli

    * Corresponding author: Ulisse Stefanelli
Abstract Full Text(HTML) Figure(7) Related Papers Cited by
  • We discuss different equilibrium problems for hyperelastic solids immersed in a fluid at rest. In particular, solids are subjected to gravity and hydrostatic pressure on their immersed boundaries. By means of a variational approach, we discuss free-floating bodies, anchored solids, and floating vessels. Conditions for the existence of local and global energy minimizers are presented.

    Mathematics Subject Classification: Primary:49S05, 74F10; Secondary:49J45, 74B20.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  The basic setting

    Figure 2.  The submarine setting

    Figure 3.  Two anchored situations: prescribed deformation on $ \omega \subset \Omega $ (left) and elastic boundary conditions on $ \Gamma\subset \partial \Omega $ (right)

    Figure 4.  The bounded-reservoir setting

    Figure 5.  The ship setting

    Figure 6.  A barely floating solid (left) and an admissible $ y\in A $ with $ A $ from (33) (right)

    Figure 7.  A deformation with $ \omega^{y^*}\subset\Omega^{y^*} $ with $ \sup_{\omega^{y^*}} y^*_3 = 0 $ and $ \sup_{\Omega^{y*}}y^*_3>0 $

  • [1] T. L. Heath (Ed.)The Works of Archimedes, Cambridge University Press, 1897. Reprinted Dover, Mineola, NY, 2002. 
    [2] B. Benešová, M. Kampschulte and S. Schwarzacher, A variational approach to hyperbolic evolutions and fluid-structure interactions, arXiv: 2008.04796.
    [3] R. E. D. Bishop and  W. G. PriceHydroelasticity of Ships, Cambridge University Press, 1979. 
    [4] P. G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity, Arch. Ration. Mech. Anal., 97 (1987), 171-188.  doi: 10.1007/BF00250807.
    [5] R. Finn, Floating and partly immersed balls in a weightless environment, Funct. Differ. Equ., 12 (2005), 167-173. 
    [6] R. Finn, Criteria for Floating I, J. Math. Fluid Mech., 13 (2011), 103-115.  doi: 10.1007/s00021-009-0009-y.
    [7] R. Finn and T. I. Vogel, Floating criteria in three dimensions, Analysis (Munich), 29 (2009), 387–402. Erratum, Analysis (Munich), 29 (2009), 339. doi: 10.1524/anly.2009.0931.
    [8] D. Grandi, M. Kružík, E. Mainini and U. Stefanelli, A phase-field approach to interfacial energies in the deformed configuration, Arch. Ration. Mech. Anal., 234 (2019), 351–373. doi: 10.1007/s00205-019-01391-8.
    [9] Z. Guerrero-Zarazua and J. Jerónimo-Castro, Some comments on floating and centroid bodies in the plane, Aequationes Math., 92 (2018), 211–222. doi: 10.1007/s00010-017-0525-4.
    [10] S. Hencl and P. Koskela, Lectures on Mappings of Finite Distortion, Lecture Notes in Mathematics 2096, Springer, 2014. doi: 10.1007/978-3-319-03173-6.
    [11] F. John, On the motion of floating bodies, I, II, Comm. Pure Appl. Math., 2 (1949), 13–57 & 3 (1950), 45–101.
    [12] B. Kaltenbacher, I. Kukavica, I. Lasiecka, R. Triggiani, A. Tuffaha and J. T. Webster, Mathematical theory of evolutionary fluid-flow structure interactions, Lecture Notes from Oberwolfach Seminars, November 20–26, 2016. Oberwolfach Seminars, 48. Birkhäuser/Springer, Cham, 2018. doi: 10.1007/978-3-319-92783-1.
    [13] M. Kružík, D. Melching and U. Stefanelli, Quasistatic evolution for dislocation-free finite plasticity, ESAIM Control Optim. Calc. Var., 26 (2020), 123.
    [14] M. Kružík and T. Roubíček, Mathematical Methods in Continuum Mechanics of Solids, Interaction of Mechanics and Mathematics. Springer, Cham, 2019. doi: 10.1007/978-3-030-02065-1.
    [15] Á. Kurusa and T. Ódor, Spherical floating bodies, Acta Sci. Math. (Szeged), 81 (2015), 699–714. doi: 10.14232/actasm-014-801-8.
    [16] P. S. Laplace, Traité de mécanique céleste: Supplement 2, 909–945, au Livre X, In Oeuvres Complète, vol. 4. Gauthier Villars, Paris. English translation by N. Bowditch (1839), reprinted by Chelsea, New York, 1966.
    [17] R. D. Mauldin (ed.), The Scottish Book, Birkhäuser, Boston, 1981.
    [18] J. McCuan, A variational formula for floating bodies, Pacific J. Math., 231 (2007), 167–191. doi: 10.2140/pjm.2007.231.167.
    [19] J. McCuan, Archimedes Revisited, Milan J. Math., 77 (2009), 385–396. doi: 10.1007/s00032-009-0099-2.
    [20] J. McCuan and R. Treinen, Capillarity and Archimedes' principle of flotation, Pacific J. Math., 265 (2013), 123–150. doi: 10.2140/pjm.2013.265.123.
    [21] O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts, Arch. Ration. Mech. Anal., 188 (2008), 183–212. doi: 10.1007/s00205-007-0091-3.
    [22] T. Richter, Fluid-Structure Interactions. Models, Analysis and Finite Elements, Lecture Notes in Computational Science and Engineering, 118. Springer, Cham, 2017. doi: 10.1007/978-3-319-63970-3.
    [23] R. Treinen, A general existence theorem for symmetric floating drops, Arch. Math. (Basel), 94 (2010), 477–488. doi: 10.1007/s00013-010-0123-3.
    [24] F. Wegner, Floating bodies of equilibrium, Stud. Appl. Math., 111 (2003), 167–183. doi: 10.1111/1467-9590.t01-1-00231.
  • 加载中
Open Access Under a Creative Commons license

Figures(7)

SHARE

Article Metrics

HTML views(1549) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return