doi: 10.3934/dcdss.2021004

On properties of similarity boundary of attractors in product dynamical systems

Department of Mathematics, National Institute of Technology, Calicut, 673 601, India

* Corresponding author: Nitha Niralda P C

Received  April 2020 Revised  October 2020 Published  January 2021

Fractals in higher dimensional dynamical systems have significant roles in physics and other applied sciences. In this paper, one of the key property of fractals, called self similarity in product systems, is studied using the concept of similarity boundary. The relationship between similarity boundary of an attractor in a product space to one of its projection spaces is discussed. The impact of inverse invariance of similarity boundary on its coordinate iterated function system is analyzed. Fractals satisfying the strong open set condition, restricted to attractors in product spaces, are characterized. The relationship between similarity boundary of attractors in product spaces and their overlapping sets is also obtained. The equivalency of the restricted open set condition (ROSC) and the strong open set condition in product spaces, is proved. Self similarity of an attractor in a product system is characterized using the Hausdorff measure of its similarity boundary. Also, the Hausdorff dimensions of the overlapping set and similarity boundary of attractors for different types of iterated function systems are obtained.

Citation: Nitha Niralda P C, Sunil Mathew. On properties of similarity boundary of attractors in product dynamical systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021004
References:
[1]

R. K. Aswathy and S. Mathew, On different forms of self-similarity, Chaos, Solitons Fractals, 87 (2016), 102-108.  doi: 10.1016/j.chaos.2016.03.021.  Google Scholar

[2]

R. K. Aswathy and S. Mathew, Separation properties of finite products of hyperbolic iterated function systems, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 594-599.  doi: 10.1016/j.cnsns.2018.07.012.  Google Scholar

[3]

J. W. Baish and R. K. Jain, Fractals and cancer, Cancer Research, 60 (2000), 3683-3688.   Google Scholar

[4]

R. Balu and S. Mathew, On $(n, m)$-iterated function systems, Asian-Eur. J. Math., 6 (2013), 1350055, 12pp. doi: 10.1142/S1793557113500551.  Google Scholar

[5]

R. BaluS. Mathew and N. A. Secelean, Separation properties of $(n,m)$-IFS attractors, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 160-168.  doi: 10.1016/j.cnsns.2017.04.009.  Google Scholar

[6] M. Barnsley, Fractals Everywhere, Academic Press, Boston, MA, 1988.   Google Scholar
[7]

M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 399 (1985), 243-275.   Google Scholar

[8]

S. S. Cross, Fractals in pathology, Journal of Pathology, 182 (1997), 1-8.  doi: 10.1002/(SICI)1096-9896(199705)182:1<1::AID-PATH808>3.0.CO;2-B.  Google Scholar

[9]

P. F. Duvall Jr. and L. S. Husch, Attractors of iterated function systems, Proc. Amer. Math. Soc., 116 (1992), 279-284.  doi: 10.1090/S0002-9939-1992-1132850-6.  Google Scholar

[10]

K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[11]

K. J. Falconer, Generalised dimensions of measures on self-affine sets, Nonlinearity, 12 (1999), 877-891.  doi: 10.1088/0951-7715/12/4/308.  Google Scholar

[12]

K. J. Falconer, Sub self similar sets, Trans. Amer. Math. Soc., 347 (1995), 3121-3129.  doi: 10.1090/S0002-9947-1995-1264809-X.  Google Scholar

[13]

K. J. Falconer, The dimension of self affine fractals II, Math. Proc. Cambridge Philos. Soc., 111 (1992), 169-179.  doi: 10.1017/S0305004100075253.  Google Scholar

[14]

K. J. Falconer, The Hausdorff dimension of self affine fractals, Math. Proc. Cambridge Philos. Soc., 103 (1988), 339-350.  doi: 10.1017/S0305004100064926.  Google Scholar

[15]

K. J. Falconer and J. M. Fraser, The visible part of plane self similar sets, Proc. Amer. Math. Soc., 141 (2013), 269-278.  doi: 10.1090/S0002-9939-2012-11312-7.  Google Scholar

[16]

K. J. Falconer and J. Miao, Random subsets of self affine fractals, Mathematika, 56 (2010), 61-76.  doi: 10.1112/S0025579309000357.  Google Scholar

[17]

K. J. Falconer and J. J. O'Connor, Symmetry and enumeration of self-similar fractals, Bull. Lond. Math. Soc., 39 (2007), 272-282.  doi: 10.1112/blms/bdl031.  Google Scholar

[18]

B. Forte and E. R. Vrscay, Solving the inverse problem for function/image approximation using iterated function systems I: Theoretical basis, Fractals, 2 (1994), 325-334.  doi: 10.1142/S0218348X94000429.  Google Scholar

[19]

B. Forte and E. R. Vrscay, Theory of generalized fractal transforms, Fractal Image Encoding and Analysis, NATO ASI Series F, 159 (1998). Google Scholar

[20]

U. R. Freiberg, Analysis on fractal objects, Meccanica, 40 (2005), 419-436.  doi: 10.1007/s11012-005-2107-0.  Google Scholar

[21]

F. Hausdorff, Dimension und äußeres Maß, Math. Ann., 79 (1918), 157-179.  doi: 10.1007/BF01457179.  Google Scholar

[22]

J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[23]

J. E. Keesling, he boundaries of self-similar tiles in $\mathbb{R}^n$, Topology Appl., 94 (1999), 195-205.  doi: 10.1016/S0166-8641(98)00031-5.  Google Scholar

[24]

J. E. Keesling and C. Krishnamurthi, The similarity boundary of a self similar set, Contemp. Math., 246 (1999), 175-187.  doi: 10.1090/conm/246/03783.  Google Scholar

[25]

H. Kunze, D. La Torre, F. Mendivil and E. R. Vrscay, Fractal Based Methods in Analysis, Springer, 2012. doi: 10.1007/978-1-4614-1891-7.  Google Scholar

[26]

JS. P. Lalley, Travelling salesman with self similar itenerary, Probab. Engrg. Inform. Sci., 4 (1990), 1-18.   Google Scholar

[27]

B. Mandelbort, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, 1977.  Google Scholar

[28]

M. Morán, Dynamical boundary of a self similar set, Fund. Math., 160 (1999), 1-14.   Google Scholar

[29]

P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philios. Soc., 42 (1946), 15-23.  doi: 10.1017/S0305004100022684.  Google Scholar

show all references

References:
[1]

R. K. Aswathy and S. Mathew, On different forms of self-similarity, Chaos, Solitons Fractals, 87 (2016), 102-108.  doi: 10.1016/j.chaos.2016.03.021.  Google Scholar

[2]

R. K. Aswathy and S. Mathew, Separation properties of finite products of hyperbolic iterated function systems, Commun. Nonlinear Sci. Numer. Simul., 67 (2019), 594-599.  doi: 10.1016/j.cnsns.2018.07.012.  Google Scholar

[3]

J. W. Baish and R. K. Jain, Fractals and cancer, Cancer Research, 60 (2000), 3683-3688.   Google Scholar

[4]

R. Balu and S. Mathew, On $(n, m)$-iterated function systems, Asian-Eur. J. Math., 6 (2013), 1350055, 12pp. doi: 10.1142/S1793557113500551.  Google Scholar

[5]

R. BaluS. Mathew and N. A. Secelean, Separation properties of $(n,m)$-IFS attractors, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 160-168.  doi: 10.1016/j.cnsns.2017.04.009.  Google Scholar

[6] M. Barnsley, Fractals Everywhere, Academic Press, Boston, MA, 1988.   Google Scholar
[7]

M. F. Barnsley and S. Demko, Iterated function systems and the global construction of fractals, Proc. Roy. Soc. London Ser. A, 399 (1985), 243-275.   Google Scholar

[8]

S. S. Cross, Fractals in pathology, Journal of Pathology, 182 (1997), 1-8.  doi: 10.1002/(SICI)1096-9896(199705)182:1<1::AID-PATH808>3.0.CO;2-B.  Google Scholar

[9]

P. F. Duvall Jr. and L. S. Husch, Attractors of iterated function systems, Proc. Amer. Math. Soc., 116 (1992), 279-284.  doi: 10.1090/S0002-9939-1992-1132850-6.  Google Scholar

[10]

K. J. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[11]

K. J. Falconer, Generalised dimensions of measures on self-affine sets, Nonlinearity, 12 (1999), 877-891.  doi: 10.1088/0951-7715/12/4/308.  Google Scholar

[12]

K. J. Falconer, Sub self similar sets, Trans. Amer. Math. Soc., 347 (1995), 3121-3129.  doi: 10.1090/S0002-9947-1995-1264809-X.  Google Scholar

[13]

K. J. Falconer, The dimension of self affine fractals II, Math. Proc. Cambridge Philos. Soc., 111 (1992), 169-179.  doi: 10.1017/S0305004100075253.  Google Scholar

[14]

K. J. Falconer, The Hausdorff dimension of self affine fractals, Math. Proc. Cambridge Philos. Soc., 103 (1988), 339-350.  doi: 10.1017/S0305004100064926.  Google Scholar

[15]

K. J. Falconer and J. M. Fraser, The visible part of plane self similar sets, Proc. Amer. Math. Soc., 141 (2013), 269-278.  doi: 10.1090/S0002-9939-2012-11312-7.  Google Scholar

[16]

K. J. Falconer and J. Miao, Random subsets of self affine fractals, Mathematika, 56 (2010), 61-76.  doi: 10.1112/S0025579309000357.  Google Scholar

[17]

K. J. Falconer and J. J. O'Connor, Symmetry and enumeration of self-similar fractals, Bull. Lond. Math. Soc., 39 (2007), 272-282.  doi: 10.1112/blms/bdl031.  Google Scholar

[18]

B. Forte and E. R. Vrscay, Solving the inverse problem for function/image approximation using iterated function systems I: Theoretical basis, Fractals, 2 (1994), 325-334.  doi: 10.1142/S0218348X94000429.  Google Scholar

[19]

B. Forte and E. R. Vrscay, Theory of generalized fractal transforms, Fractal Image Encoding and Analysis, NATO ASI Series F, 159 (1998). Google Scholar

[20]

U. R. Freiberg, Analysis on fractal objects, Meccanica, 40 (2005), 419-436.  doi: 10.1007/s11012-005-2107-0.  Google Scholar

[21]

F. Hausdorff, Dimension und äußeres Maß, Math. Ann., 79 (1918), 157-179.  doi: 10.1007/BF01457179.  Google Scholar

[22]

J. E. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J., 30 (1981), 713-747.  doi: 10.1512/iumj.1981.30.30055.  Google Scholar

[23]

J. E. Keesling, he boundaries of self-similar tiles in $\mathbb{R}^n$, Topology Appl., 94 (1999), 195-205.  doi: 10.1016/S0166-8641(98)00031-5.  Google Scholar

[24]

J. E. Keesling and C. Krishnamurthi, The similarity boundary of a self similar set, Contemp. Math., 246 (1999), 175-187.  doi: 10.1090/conm/246/03783.  Google Scholar

[25]

H. Kunze, D. La Torre, F. Mendivil and E. R. Vrscay, Fractal Based Methods in Analysis, Springer, 2012. doi: 10.1007/978-1-4614-1891-7.  Google Scholar

[26]

JS. P. Lalley, Travelling salesman with self similar itenerary, Probab. Engrg. Inform. Sci., 4 (1990), 1-18.   Google Scholar

[27]

B. Mandelbort, The Fractal Geometry of Nature, W. H. Freeman and Co., San Francisco, 1977.  Google Scholar

[28]

M. Morán, Dynamical boundary of a self similar set, Fund. Math., 160 (1999), 1-14.   Google Scholar

[29]

P. A. P. Moran, Additive functions of intervals and Hausdorff measure, Proc. Cambridge Philios. Soc., 42 (1946), 15-23.  doi: 10.1017/S0305004100022684.  Google Scholar

Figure 1.  Attractor of the product IFS $ \Phi\times \Psi. $
Figure 2.  Attractor of the product IFS $ \Phi\times \Psi. $
Figure 3.  Attractor of the product IFS $ \Phi\times \Psi. $
Figure 4.  Attractor of the product IFS $ \Phi\times \Psi. $
[1]

Meng Ding, Ting-Zhu Huang, Xi-Le Zhao, Michael K. Ng, Tian-Hui Ma. Tensor train rank minimization with nonlocal self-similarity for tensor completion. Inverse Problems & Imaging, 2021, 15 (3) : 475-498. doi: 10.3934/ipi.2021001

[2]

Marat Akhmet, Ejaily Milad Alejaily. Abstract similarity, fractals and chaos. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2479-2497. doi: 10.3934/dcdsb.2020191

[3]

Xu Zhang, Xiang Li. Modeling and identification of dynamical system with Genetic Regulation in batch fermentation of glycerol. Numerical Algebra, Control & Optimization, 2015, 5 (4) : 393-403. doi: 10.3934/naco.2015.5.393

[4]

Francesca Bucci. Improved boundary regularity for a Stokes-Lamé system. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021018

[5]

Francis Hounkpe, Gregory Seregin. An approximation of forward self-similar solutions to the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021059

[6]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[7]

Davide La Torre, Simone Marsiglio, Franklin Mendivil, Fabio Privileggi. Public debt dynamics under ambiguity by means of iterated function systems on density functions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021070

[8]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[9]

Bo Duan, Zhengce Zhang. A reaction-diffusion-advection two-species competition system with a free boundary in heterogeneous environment. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021067

[10]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

[11]

M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849

[12]

Elena Bonetti, Pierluigi Colli, Gianni Gilardi. Singular limit of an integrodifferential system related to the entropy balance. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1935-1953. doi: 10.3934/dcdsb.2014.19.1935

[13]

Dmitry Treschev. A locally integrable multi-dimensional billiard system. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5271-5284. doi: 10.3934/dcds.2017228

[14]

Nizami A. Gasilov. Solving a system of linear differential equations with interval coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2739-2747. doi: 10.3934/dcdsb.2020203

[15]

Eduardo Casas, Christian Clason, Arnd Rösch. Preface special issue on system modeling and optimization. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021008

[16]

Tian Hou, Yi Wang, Xizhuang Xie. Instability and bifurcation of a cooperative system with periodic coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021026

[17]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[18]

Dugan Nina, Ademir Fernando Pazoto, Lionel Rosier. Controllability of a 1-D tank containing a fluid modeled by a Boussinesq system. Evolution Equations & Control Theory, 2013, 2 (2) : 379-402. doi: 10.3934/eect.2013.2.379

[19]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[20]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]