[1]
|
World Data Atlas: Uganda - Crude Death Rate, 2020. Available from: https://www.knoema.com/atlas/uganda/death-rate.
|
[2]
|
CDC: About HIV, 2020. Available from: https://www.cdc.gov/hiv/basics/whatishiv.html.
|
[3]
|
The Global Fund, 2020. Available from: https://www.theglobalfund.org/en/.
|
[4]
|
Healio, HIV/AIDS, Infectious Disease News: Cuts in Foreign Aid for HIV Place Millions at Risk, 2017. Available from: https://www.healio.com/news/infectious-disease/20171010/cuts-in-foreign-aid-for-hiv-place-millions-at-risk.
|
[5]
|
HIV.gov, Symptoms of HIV: How Can You Tell if You Have Hiv?, 2020. Available from: https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/symptoms-of-hiv.
|
[6]
|
WHO, HIV/AIDS: Pre-Exposure Prophylaxis, 2020. Available from: https://www.who.int/hiv/topics/prep/en/.
|
[7]
|
CDC: PrEP (Pre-Exposure Prophylaxis), 2020. Available from: https://www.cdc.gov/hiv/basics/prep.html.
|
[8]
|
HIV.gov: Presidendent's Emergency Plan for Aids Relief, 2020. Available from: https://www.hiv.gov/federal-response/pepfar-global-aids/pepfar.
|
[9]
|
WHO: HIV/AIDS, 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
|
[10]
|
S. Del Valle, A. Morales Evangelista, M. C. Velasco, C. Kribs-Zaleta and S.-F. Hsu Schmitz, Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci., 187 (2004), 111-133.
doi: 10.1016/j.mbs.2003.11.004.
|
[11]
|
J. Fobil and I. Soyiri, An assessment of government policy response to HIV/AIDS in ghana, Sahara J-J Soc Asp H, 3 (2006), 457-465.
doi: 10.1080/17290376.2006.9724872.
|
[12]
|
E. C. Green, D. T. Halperin, V. Nantulya and J. A. Hogle, Uganda's HIV prevention success: the role of sexual behavior change and the national response, AIDS Behav., 10 (2006), 335-346.
doi: 10.1007/s10461-006-9073-y.
|
[13]
|
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.
doi: 10.1137/S0036144500371907.
|
[14]
|
H.-F. Huo, R. Chen and X.-Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model., 40 (2016), 6550-6559.
doi: 10.1016/j.apm.2016.01.054.
|
[15]
|
H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757-770.
doi: 10.3934/mbe.2008.5.757.
|
[16]
|
I. Kasamba, K. Baisley, B. N. Mayanja, D. Maher and H. Grosskurth, The impact of antiretroviral treatment on mortality trends of HIV-positive adults in rural Uganda: A longitudinal population-based study, 1999–2009, Trop. Med. Int. Health, 17 (2012), e66–e73.
doi: 10.1111/j.1365-3156.2012.02841.x.
|
[17]
|
A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113-128.
doi: 10.1093/imammb/dqi001.
|
[18]
|
A. Kumar, P. K. Srivastava and Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theoret. Biol., 414 (2017), 103-119.
doi: 10.1016/j.jtbi.2016.11.016.
|
[19]
|
S. D. Lawn, M. E. Török and R. Wood, Optimum time to start antiretroviral therapy during hiv-associated opportunistic infections, Curr. Opin. Infect. Dis., 24 (2011), 34-42.
doi: 10.1097/QCO.0b013e3283420f76.
|
[20]
|
H. Liu and J.-F. Zhang, Dynamics of two time delays differential equation model to hiv latent infection, Phys. A, 514 (2019), 384-395.
doi: 10.1016/j.physa.2018.09.087.
|
[21]
|
S.-H. Ma and H.-F. Huo, Global dynamics for a multi-group alcoholism model with public health education and alcoholism age, Math. Biosci. Eng., 16 (2019), 1683-1708.
doi: 10.3934/mbe.2019080.
|
[22]
|
Z. Mukandavire, W. Garira and J. M. Tchuenche, Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics, Appl. Math. Model., 33 (2009), 2084-2095.
doi: 10.1016/j.apm.2008.05.017.
|
[23]
|
P. Nunnenkamp and H. Öhler, Throwing foreign aid at HIV/AIDS in developing countries: Missing the target, World Dev., 39 (2011), 1704-1723.
|
[24]
|
S. Okware, J. Kinsman, S. Onyango and et. al., Revisiting the ABC strategy: HIV prevention in Uganda in the era of antiretroviral therapy, Postgrad Med. J., 81 (2005), 625–628.
doi: 10.1136/pgmj.2005.032425.
|
[25]
|
S. Singh, J. E. Darroch and A. Bankole, A, b and c in Uganda: The roles of abstinence, monogamy and condom use in HIV decline, Reprod. Health Matters, 12 (2004), 129-131.
doi: 10.1016/S0968-8080(04)23118-4.
|
[26]
|
UNAIDS, Making Condoms Work for HIV Prevention. Cutting-edge Perspectives. UNAIDS Best Practice Collection, 2004.
|
[27]
|
R. P. Walensky, E. D. Borre, L.-G. Bekker, E. P. Hyle, G. S. Gonsalves, R. Wood, S. P. Eholié, M. C. Weinstein, X. Anglaret, K. A. Freedberg and et. al., Do less harm: Evaluating HIV programmatic alternatives in response to cutbacks in foreign aid, Ann. Intern. Med., 167 (2017), 618–629.
doi: 10.7326/M17-1358.
|
[28]
|
D. Wanduku, The stationary distribution and stochastic persistence for a class of disease models: Case study of malaria, Int. J. of Biomath., 13 (2020), 2050024, 59 pp.
doi: 10.1142/S1793524520500242.
|
[29]
|
D. Wanduku, Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations, Appl. Math. Comput., 294 (2017), 49-76.
doi: 10.1016/j.amc.2016.09.001.
|
[30]
|
D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. of Biomath., 11 (2018), 1850085, 46 pp.
doi: 10.1142/S1793524518500857.
|
[31]
|
D. Wanduku, The stochastic extinction and stability conditions for nonlinear malaria epidemics, Math. Biosci. Eng., 16 (2019), 3771-3806.
doi: 10.3934/mbe.2019187.
|
[32]
|
D. Wanduku, Modeling highly random dynamical infectious systems, in Applied Mathematical Analysis: Theory, Methods, and Applications, Springer, (2020), 509–578.
|
[33]
|
D. Wanduku, A nonlinear multi-population behavioral model to assess the roles of education campaigns, random supply of AIDS, and delayed art treament in HIV/AIDS epidemics, Math. Biosci. Eng., 17 (2020), 6791-6837.
|
[34]
|
D. Wanduku, On the almost sure convergence of a stochastic process in in a class of nonlinear multi-population behavioral models for hiv/aids with delayed art treatment, to appear in, Stoch Anal Appl..
|
[35]
|
D. Wanduku and G. S. Ladde, Fundamental properties of a two-scale network stochastic human epidemic dynamic model, Neural Parallel Sci. Comput., 19 (2011), 229-269.
|
[36]
|
D. Wanduku and B. O. Oluyede, Some asymptotic properties of SEIRS models with nonlinear incidence and random delays, Nonlinear Anal. Model. Control, 25 (2020), 461-481.
doi: 10.15388/namc.2020.25.16660.
|
[37]
|
WHO, WHO expands recommendation on oral pre-exposure prophylaxis of HIV infection (PrEP), policy brief, WHO Reference Number: WHO/HIV/2015.48, 1–2.
|