[1]

World Data Atlas: Uganda  Crude Death Rate, 2020. Available from: https://www.knoema.com/atlas/uganda/deathrate.

[2]

CDC: About HIV, 2020. Available from: https://www.cdc.gov/hiv/basics/whatishiv.html.

[3]

The Global Fund, 2020. Available from: https://www.theglobalfund.org/en/.

[4]

Healio, HIV/AIDS, Infectious Disease News: Cuts in Foreign Aid for HIV Place Millions at Risk, 2017. Available from: https://www.healio.com/news/infectiousdisease/20171010/cutsinforeignaidforhivplacemillionsatrisk.

[5]

HIV.gov, Symptoms of HIV: How Can You Tell if You Have Hiv?, 2020. Available from: https://www.hiv.gov/hivbasics/overview/abouthivandaids/symptomsofhiv.

[6]

WHO, HIV/AIDS: PreExposure Prophylaxis, 2020. Available from: https://www.who.int/hiv/topics/prep/en/.

[7]

CDC: PrEP (PreExposure Prophylaxis), 2020. Available from: https://www.cdc.gov/hiv/basics/prep.html.

[8]

HIV.gov: Presidendent's Emergency Plan for Aids Relief, 2020. Available from: https://www.hiv.gov/federalresponse/pepfarglobalaids/pepfar.

[9]

WHO: HIV/AIDS, 2020. Available from: https://www.who.int/newsroom/factsheets/detail/hivaids.

[10]

S. Del Valle, A. Morales Evangelista, M. C. Velasco, C. KribsZaleta and S.F. Hsu Schmitz, Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci., 187 (2004), 111133.
doi: 10.1016/j.mbs.2003.11.004.

[11]

J. Fobil and I. Soyiri, An assessment of government policy response to HIV/AIDS in ghana, Sahara JJ Soc Asp H, 3 (2006), 457465.
doi: 10.1080/17290376.2006.9724872.

[12]

E. C. Green, D. T. Halperin, V. Nantulya and J. A. Hogle, Uganda's HIV prevention success: the role of sexual behavior change and the national response, AIDS Behav., 10 (2006), 335346.
doi: 10.1007/s104610069073y.

[13]

H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599653.
doi: 10.1137/S0036144500371907.

[14]

H.F. Huo, R. Chen and X.Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model., 40 (2016), 65506559.
doi: 10.1016/j.apm.2016.01.054.

[15]

H. Joshi, S. Lenhart, K. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757770.
doi: 10.3934/mbe.2008.5.757.

[16]

I. Kasamba, K. Baisley, B. N. Mayanja, D. Maher and H. Grosskurth, The impact of antiretroviral treatment on mortality trends of HIVpositive adults in rural Uganda: A longitudinal populationbased study, 1999–2009, Trop. Med. Int. Health, 17 (2012), e66–e73.
doi: 10.1111/j.13653156.2012.02841.x.

[17]

A. Korobeinikov and P. K. Maini, Nonlinear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113128.
doi: 10.1093/imammb/dqi001.

[18]

A. Kumar, P. K. Srivastava and Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theoret. Biol., 414 (2017), 103119.
doi: 10.1016/j.jtbi.2016.11.016.

[19]

S. D. Lawn, M. E. Török and R. Wood, Optimum time to start antiretroviral therapy during hivassociated opportunistic infections, Curr. Opin. Infect. Dis., 24 (2011), 3442.
doi: 10.1097/QCO.0b013e3283420f76.

[20]

H. Liu and J.F. Zhang, Dynamics of two time delays differential equation model to hiv latent infection, Phys. A, 514 (2019), 384395.
doi: 10.1016/j.physa.2018.09.087.

[21]

S.H. Ma and H.F. Huo, Global dynamics for a multigroup alcoholism model with public health education and alcoholism age, Math. Biosci. Eng., 16 (2019), 16831708.
doi: 10.3934/mbe.2019080.

[22]

Z. Mukandavire, W. Garira and J. M. Tchuenche, Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics, Appl. Math. Model., 33 (2009), 20842095.
doi: 10.1016/j.apm.2008.05.017.

[23]

P. Nunnenkamp and H. Öhler, Throwing foreign aid at HIV/AIDS in developing countries: Missing the target, World Dev., 39 (2011), 17041723.

[24]

S. Okware, J. Kinsman, S. Onyango and et. al., Revisiting the ABC strategy: HIV prevention in Uganda in the era of antiretroviral therapy, Postgrad Med. J., 81 (2005), 625–628.
doi: 10.1136/pgmj.2005.032425.

[25]

S. Singh, J. E. Darroch and A. Bankole, A, b and c in Uganda: The roles of abstinence, monogamy and condom use in HIV decline, Reprod. Health Matters, 12 (2004), 129131.
doi: 10.1016/S09688080(04)231184.

[26]

UNAIDS, Making Condoms Work for HIV Prevention. Cuttingedge Perspectives. UNAIDS Best Practice Collection, 2004.

[27]

R. P. Walensky, E. D. Borre, L.G. Bekker, E. P. Hyle, G. S. Gonsalves, R. Wood, S. P. Eholié, M. C. Weinstein, X. Anglaret, K. A. Freedberg and et. al., Do less harm: Evaluating HIV programmatic alternatives in response to cutbacks in foreign aid, Ann. Intern. Med., 167 (2017), 618–629.
doi: 10.7326/M171358.

[28]

D. Wanduku, The stationary distribution and stochastic persistence for a class of disease models: Case study of malaria, Int. J. of Biomath., 13 (2020), 2050024, 59 pp.
doi: 10.1142/S1793524520500242.

[29]

D. Wanduku, Complete global analysis of a twoscale network SIRS epidemic dynamic model with distributed delay and random perturbations, Appl. Math. Comput., 294 (2017), 4976.
doi: 10.1016/j.amc.2016.09.001.

[30]

D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a nonrandom environment, Int. J. of Biomath., 11 (2018), 1850085, 46 pp.
doi: 10.1142/S1793524518500857.

[31]

D. Wanduku, The stochastic extinction and stability conditions for nonlinear malaria epidemics, Math. Biosci. Eng., 16 (2019), 37713806.
doi: 10.3934/mbe.2019187.

[32]

D. Wanduku, Modeling highly random dynamical infectious systems, in Applied Mathematical Analysis: Theory, Methods, and Applications, Springer, (2020), 509–578.

[33]

D. Wanduku, A nonlinear multipopulation behavioral model to assess the roles of education campaigns, random supply of AIDS, and delayed art treament in HIV/AIDS epidemics, Math. Biosci. Eng., 17 (2020), 67916837.

[34]

D. Wanduku, On the almost sure convergence of a stochastic process in in a class of nonlinear multipopulation behavioral models for hiv/aids with delayed art treatment, to appear in, Stoch Anal Appl..

[35]

D. Wanduku and G. S. Ladde, Fundamental properties of a twoscale network stochastic human epidemic dynamic model, Neural Parallel Sci. Comput., 19 (2011), 229269.

[36]

D. Wanduku and B. O. Oluyede, Some asymptotic properties of SEIRS models with nonlinear incidence and random delays, Nonlinear Anal. Model. Control, 25 (2020), 461481.
doi: 10.15388/namc.2020.25.16660.

[37]

WHO, WHO expands recommendation on oral preexposure prophylaxis of HIV infection (PrEP), policy brief, WHO Reference Number: WHO/HIV/2015.48, 1–2.
