\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Finite- and multi-dimensional state representations and some fundamental asymptotic properties of a family of nonlinear multi-population models for HIV/AIDS with ART treatment and distributed delays

  • * Corresponding author

    * Corresponding author
Abstract / Introduction Full Text(HTML) Figure(4) / Table(1) Related Papers Cited by
  • A multipopulation HIV/AIDS deterministic epidemic model is studied. The population structure is a multihuman behavioral structure composed of humans practicing varieties of distinct HIV/AIDS preventive measures learnt from information and education campaigns (IEC) in the community. Antiretroviral therapy (ART) treatment is considered, and the delay from HIV exposure until the onset of ART is considered. The effects of national and multilateral support providing official developmental assistance (ODAs) to combat HIV are represented. A separate dynamics for the IEC information density in the community is derived. The epidemic model is a system of differential equations with random delays. The basic reproduction number (BRN) for the dynamics is obtained, and stability analysis of the system is conducted, whereby other disease control conditions are obtained in a multi- and a finite dimensional phase space. Numerical simulation results are given.

    Mathematics Subject Classification: 92-10, 92B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Shows the behaviors of the modified standard incidence and the ordinary standard incidence rates as the number of infectives continually increase over time. Clearly, the modified standard incidence is more suitable for many real life scenarios where the incidence rate of the disease saturates over time as the number of infections increase in the population

    Figure 2.  shows the different states of the population in the HIV/AIDS epidemic, and the transition rates between the states. Note that the operators $ \mathbb{E}_{\tau_{1}}[\cdots] $ and $ \mathbb{E}_{\tau_{2}}[\cdots] $ represent expectations with respect to the random variables $ \tau_{1} $ and $ \tau_{2} $, respectively

    Figure 3.  (ⅰ) depicts a continuously rising relationship between the BRN and the delay $ \tau_{2} $. (ⅱ) shows a declining relationship between the BRN and the proportion $ 1-\varepsilon_{0} $ of individuals who are receiving ART treatment

    Figure 4.  (a-1)-(d-1) shows the behavior of the path of the total susceptible population $ S(t) = S_{0}(t)+S_{1}(t)+S_{2}(t) $, over time, whenever the conditions of Theorem 5.3 and Theorem 5.4 are satisfied. Clearly, the path of $ S(t) $ is persistent as proven in Theorem 5.4 and approaches the DFE state $ S^{*}_{0} = \frac{B}{\mu_{S_{0}}} = 26.13417 $. The dotted redline in (d-1) is the value of $ S^{*}_{0} = 26.13417 $. The figures (e-1), (f-1) and (g-1) also show the paths of the HIV related states $ I, T $ and $ A $. Clearly, the paths of $ I, T $ and $ A $ approach the corresponding coordinate $ 0 $ of the DFE $ E_{0} $. In other words, the disease is getting extinct over time

    Table 1.  Shows the list of model parameters, estimates and their definitions. Note that the parameters are expressed in years and converted to days for all simulations in Section 7

    Parameter Symbol(s) Estimate(s) in years
    Effective response rate of $ S_0(t), S_1(t), S_2(t) $ $ \gamma_0, \gamma_1, \gamma_2 $ 0.1, 0.1, 0.8
    Infection transmission rates $ \beta_0, \beta_1, \beta_2 $ 0.0211, 0.001055, 0.00844
    Natural death rates of $ S_0(t), S_1(t), S_2(t) $ $ \mu_{S_0}, \mu_{S_1}, \mu_{S_2} $ 0.01568
    Natural death rates of $ I(t), T(t), A(t), R(t) $ $ \mu_I, \mu_T, \mu_A, \mu_R $ 0.01568
    Infection related death rates of $ I(t) $ $ d_I $ 0.1474
    Infection related death rates of $ T(t) $ $ d_T $ 0.03685
    Infection related death rates of $ A(t) $ $ d_A $ 0.2948
    Recruitment rate B 0.55
    Return rate from $ T(t) $ to $ I(t) $ $ \alpha_{TI} $ 0.01
    Failure of treatment rate from $ T(t) $ to $ A(t) $ $ \alpha_{TA} $ 0.01
    Proportion of newly infected individuals from the class $ S_j, j=0, 1, 2 $ who do not receive ART and joins full blown AIDS state $ A(t) $ $ \epsilon_0, \epsilon_1, \epsilon_2 $ 0 - 1
    Time delay to progress to full blown AIDS $ \tau_1 $ 2 - 15
    Time delay to begin treatment $ \tau_2 $ 0.38-15
     | Show Table
    DownLoad: CSV
  • [1] World Data Atlas: Uganda - Crude Death Rate, 2020. Available from: https://www.knoema.com/atlas/uganda/death-rate.
    [2] CDC: About HIV, 2020. Available from: https://www.cdc.gov/hiv/basics/whatishiv.html.
    [3] The Global Fund, 2020. Available from: https://www.theglobalfund.org/en/.
    [4] Healio, HIV/AIDS, Infectious Disease News: Cuts in Foreign Aid for HIV Place Millions at Risk, 2017. Available from: https://www.healio.com/news/infectious-disease/20171010/cuts-in-foreign-aid-for-hiv-place-millions-at-risk.
    [5] HIV.gov, Symptoms of HIV: How Can You Tell if You Have Hiv?, 2020. Available from: https://www.hiv.gov/hiv-basics/overview/about-hiv-and-aids/symptoms-of-hiv.
    [6] WHO, HIV/AIDS: Pre-Exposure Prophylaxis, 2020. Available from: https://www.who.int/hiv/topics/prep/en/.
    [7] CDC: PrEP (Pre-Exposure Prophylaxis), 2020. Available from: https://www.cdc.gov/hiv/basics/prep.html.
    [8] HIV.gov: Presidendent's Emergency Plan for Aids Relief, 2020. Available from: https://www.hiv.gov/federal-response/pepfar-global-aids/pepfar.
    [9] WHO: HIV/AIDS, 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/hiv-aids.
    [10] S. Del ValleA. Morales EvangelistaM. C. VelascoC. Kribs-Zaleta and S.-F. Hsu Schmitz, Effects of education, vaccination and treatment on HIV transmission in homosexuals with genetic heterogeneity, Math. Biosci., 187 (2004), 111-133.  doi: 10.1016/j.mbs.2003.11.004.
    [11] J. Fobil and I. Soyiri, An assessment of government policy response to HIV/AIDS in ghana, Sahara J-J Soc Asp H, 3 (2006), 457-465.  doi: 10.1080/17290376.2006.9724872.
    [12] E. C. GreenD. T. HalperinV. Nantulya and J. A. Hogle, Uganda's HIV prevention success: the role of sexual behavior change and the national response, AIDS Behav., 10 (2006), 335-346.  doi: 10.1007/s10461-006-9073-y.
    [13] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599-653.  doi: 10.1137/S0036144500371907.
    [14] H.-F. HuoR. Chen and X.-Y. Wang, Modelling and stability of HIV/AIDS epidemic model with treatment, Appl. Math. Model., 40 (2016), 6550-6559.  doi: 10.1016/j.apm.2016.01.054.
    [15] H. JoshiS. LenhartK. Albright and K. Gipson, Modeling the effect of information campaigns on the HIV epidemic in Uganda, Math. Biosci. Eng., 5 (2008), 757-770.  doi: 10.3934/mbe.2008.5.757.
    [16] I. Kasamba, K. Baisley, B. N. Mayanja, D. Maher and H. Grosskurth, The impact of antiretroviral treatment on mortality trends of HIV-positive adults in rural Uganda: A longitudinal population-based study, 1999–2009, Trop. Med. Int. Health, 17 (2012), e66–e73. doi: 10.1111/j.1365-3156.2012.02841.x.
    [17] A. Korobeinikov and P. K. Maini, Non-linear incidence and stability of infectious disease models, Math. Med. Biol., 22 (2005), 113-128.  doi: 10.1093/imammb/dqi001.
    [18] A. KumarP. K. Srivastava and Y. Takeuchi, Modeling the role of information and limited optimal treatment on disease prevalence, J. Theoret. Biol., 414 (2017), 103-119.  doi: 10.1016/j.jtbi.2016.11.016.
    [19] S. D. LawnM. E. Török and R. Wood, Optimum time to start antiretroviral therapy during hiv-associated opportunistic infections, Curr. Opin. Infect. Dis., 24 (2011), 34-42.  doi: 10.1097/QCO.0b013e3283420f76.
    [20] H. Liu and J.-F. Zhang, Dynamics of two time delays differential equation model to hiv latent infection, Phys. A, 514 (2019), 384-395.  doi: 10.1016/j.physa.2018.09.087.
    [21] S.-H. Ma and H.-F. Huo, Global dynamics for a multi-group alcoholism model with public health education and alcoholism age, Math. Biosci. Eng., 16 (2019), 1683-1708.  doi: 10.3934/mbe.2019080.
    [22] Z. MukandavireW. Garira and J. M. Tchuenche, Modelling effects of public health educational campaigns on HIV/AIDS transmission dynamics, Appl. Math. Model., 33 (2009), 2084-2095.  doi: 10.1016/j.apm.2008.05.017.
    [23] P. Nunnenkamp and H. Öhler, Throwing foreign aid at HIV/AIDS in developing countries: Missing the target, World Dev., 39 (2011), 1704-1723. 
    [24] S. Okware, J. Kinsman, S. Onyango and et. al., Revisiting the ABC strategy: HIV prevention in Uganda in the era of antiretroviral therapy, Postgrad Med. J., 81 (2005), 625–628. doi: 10.1136/pgmj.2005.032425.
    [25] S. SinghJ. E. Darroch and A. Bankole, A, b and c in Uganda: The roles of abstinence, monogamy and condom use in HIV decline, Reprod. Health Matters, 12 (2004), 129-131.  doi: 10.1016/S0968-8080(04)23118-4.
    [26] UNAIDS, Making Condoms Work for HIV Prevention. Cutting-edge Perspectives. UNAIDS Best Practice Collection, 2004.
    [27] R. P. Walensky, E. D. Borre, L.-G. Bekker, E. P. Hyle, G. S. Gonsalves, R. Wood, S. P. Eholié, M. C. Weinstein, X. Anglaret, K. A. Freedberg and et. al., Do less harm: Evaluating HIV programmatic alternatives in response to cutbacks in foreign aid, Ann. Intern. Med., 167 (2017), 618–629. doi: 10.7326/M17-1358.
    [28] D. Wanduku, The stationary distribution and stochastic persistence for a class of disease models: Case study of malaria, Int. J. of Biomath., 13 (2020), 2050024, 59 pp. doi: 10.1142/S1793524520500242.
    [29] D. Wanduku, Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations, Appl. Math. Comput., 294 (2017), 49-76.  doi: 10.1016/j.amc.2016.09.001.
    [30] D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. of Biomath., 11 (2018), 1850085, 46 pp. doi: 10.1142/S1793524518500857.
    [31] D. Wanduku, The stochastic extinction and stability conditions for nonlinear malaria epidemics, Math. Biosci. Eng., 16 (2019), 3771-3806.  doi: 10.3934/mbe.2019187.
    [32] D. Wanduku, Modeling highly random dynamical infectious systems, in Applied Mathematical Analysis: Theory, Methods, and Applications, Springer, (2020), 509–578.
    [33] D. Wanduku, A nonlinear multi-population behavioral model to assess the roles of education campaigns, random supply of AIDS, and delayed art treament in HIV/AIDS epidemics, Math. Biosci. Eng., 17 (2020), 6791-6837. 
    [34] D. Wanduku, On the almost sure convergence of a stochastic process in in a class of nonlinear multi-population behavioral models for hiv/aids with delayed art treatment, to appear in, Stoch Anal Appl..
    [35] D. Wanduku and G. S. Ladde, Fundamental properties of a two-scale network stochastic human epidemic dynamic model, Neural Parallel Sci. Comput., 19 (2011), 229-269. 
    [36] D. Wanduku and B. O. Oluyede, Some asymptotic properties of SEIRS models with nonlinear incidence and random delays, Nonlinear Anal. Model. Control, 25 (2020), 461-481.  doi: 10.15388/namc.2020.25.16660.
    [37] WHO, WHO expands recommendation on oral pre-exposure prophylaxis of HIV infection (PrEP), policy brief, WHO Reference Number: WHO/HIV/2015.48, 1–2.
  • 加载中

Figures(4)

Tables(1)

SHARE

Article Metrics

HTML views(2240) PDF downloads(335) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return