• Previous Article
    Dimension reduction of thermistor models for large-area organic light-emitting diodes
  • DCDS-S Home
  • This Issue
  • Next Article
    Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation
doi: 10.3934/dcdss.2021008

Solutions to Chern-Simons-Schrödinger systems with external potential

1. 

Department of Mathematics, Jiangxi Normal University, Nanchang, Jiangxi 330022, China

2. 

School of Sciences, Nanchang Institute of Technology, Nanchang 330099, China

* Corresponding author: Jianfu Yang

Received  August 2020 Revised  November 2020 Published  January 2021

In this paper, we consider the existence of static solutions to the nonlinear Chern-Simons-Schrödinger system
$ \begin{equation} \left\{\begin{array}{ll} -iD_0\Psi-(D_1D_1+D_2D_2)\Psi+V\Psi = |\Psi|^{p-2}\Psi,\\ \partial_0A_1-\partial_1A_0 = -\frac 12i\lambda[\overline{\Psi}D_2\Psi-\Psi\overline{D_2\Psi}],\\ \partial_0A_2-\partial_2A_0 = \frac 12i\lambda[\overline{\Psi}D_1\Psi-\Psi\overline{D_1\Psi}],\\ \partial_1A_2-\partial_2A_1 = -\frac12\lambda|\Psi|^2.\\ \end{array} \right. \end{equation} $
with an external potential
$ V(x) $
, where
$ D_{0} = \partial_{t}+i\lambda A_{0} $
and
$ D_{k} = \partial_{x_k}-i\lambda A_{k}, \, k = 1,2, $
for
$ (x_1,x_2,t)\in \mathbb{R}^{2,1} $
are covariant derivatives,
$ \lambda $
is the coupling number. Suppose that
$ V(x) $
satisfies
$ \lim_{|x|\to\infty}V(x) = +\infty $
, we show for
$ 2<p<4 $
that there exists
$ \lambda^*>0 $
such that if
$ 0<\lambda<\lambda^* $
, problem (1) has two nontrivial static solutions
$ (\Psi_\lambda, A_0^\lambda, A_1^\lambda,A_2^\lambda) $
. Moreover, there also exists
$ \tilde\lambda>0 $
such that if
$ \lambda>\tilde\lambda $
, problem (1) has no nontrivial solutions. While for
$ p>4 $
we assume in addition that
$ x\cdot \nabla V(x)\geq 0 $
, then problem (1) admits a mountain pass solution for all
$ \lambda>0 $
.
Citation: Lingyu Li, Jianfu Yang, Jinge Yang. Solutions to Chern-Simons-Schrödinger systems with external potential. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021008
References:
[1]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.  Google Scholar

[2]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the non-linear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.  Google Scholar

[3]

P. L. CunhaP. d'AveniaA. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differ. Equ. Appl., 22 (2015), 1831-1850.  doi: 10.1007/s00030-015-0346-x.  Google Scholar

[4]

V. Dunne, Self-Dual Chern-Simons Theories, Springer, New York, 1995. doi: 10.1007/978-3-540-44777-1.  Google Scholar

[5]

Y. He and G. Li, Standing waves for a class of Schrödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents, Ann. Acad. Sci. Fenn. Math., 40 (2015), 729-766.  doi: 10.5186/aasfm.2015.4041.  Google Scholar

[6]

H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702, 8 pp. doi: 10.1063/1.4726192.  Google Scholar

[7]

R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[8]

R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.  doi: 10.1103/PhysRevLett.64.2969.  Google Scholar

[9]

R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.  Google Scholar

[10]

Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[11]

Y. Jiang and H. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.  Google Scholar

[12]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.  Google Scholar

[13]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.  Google Scholar

[14]

Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without $(AR)$ condition, J. Math. Anal. Appl., 415 (2014), 422-434.  doi: 10.1016/j.jmaa.2014.01.084.  Google Scholar

[15]

Y. Wan and J. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765-2786.  doi: 10.3934/dcds.2017119.  Google Scholar

[16]

M. Willem, Minimax Thorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

show all references

References:
[1]

J. ByeonH. Huh and J. Seok, Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.  doi: 10.1016/j.jfa.2012.05.024.  Google Scholar

[2]

J. ByeonH. Huh and J. Seok, On standing waves with a vortex point of order $N$ for the non-linear Chern-Simons-Schrödinger equations, J. Differ. Equ., 261 (2016), 1285-1316.  doi: 10.1016/j.jde.2016.04.004.  Google Scholar

[3]

P. L. CunhaP. d'AveniaA. Pomponio and G. Siciliano, A multiplicity result for Chern-Simons-Schrödinger equation with a general nonlinearity, Nonlinear Differ. Equ. Appl., 22 (2015), 1831-1850.  doi: 10.1007/s00030-015-0346-x.  Google Scholar

[4]

V. Dunne, Self-Dual Chern-Simons Theories, Springer, New York, 1995. doi: 10.1007/978-3-540-44777-1.  Google Scholar

[5]

Y. He and G. Li, Standing waves for a class of Schrödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents, Ann. Acad. Sci. Fenn. Math., 40 (2015), 729-766.  doi: 10.5186/aasfm.2015.4041.  Google Scholar

[6]

H. Huh, Standing waves of the Schrödinger equation coupled with the Chern-Simons gauge field, J. Math. Phys., 53 (2012), 063702, 8 pp. doi: 10.1063/1.4726192.  Google Scholar

[7]

R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.  doi: 10.1103/PhysRevD.42.3500.  Google Scholar

[8]

R. Jackiw and S.-Y. Pi, Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.  doi: 10.1103/PhysRevLett.64.2969.  Google Scholar

[9]

R. Jackiw and S.-Y. Pi, Self-dual Chern-Simons solitons, Progr. Theoret. Phys. Suppl., 107 (1992), 1-40.  doi: 10.1143/PTPS.107.1.  Google Scholar

[10]

Y. Jiang and H. Zhou, Schrödinger-Poisson system with steep potential well, J. Differ. Equ., 251 (2011), 582-608.  doi: 10.1016/j.jde.2011.05.006.  Google Scholar

[11]

Y. Jiang and H. Zhou, Multiple solutions for a Schrödinger-Poisson-Slater equation with external Coulomb potential, Sci. China Math., 57 (2014), 1163-1174.  doi: 10.1007/s11425-014-4790-6.  Google Scholar

[12]

A. Pomponio and D. Ruiz, A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.  doi: 10.4171/JEMS/535.  Google Scholar

[13]

A. Pomponio and D. Ruiz, Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.  doi: 10.1007/s00526-014-0749-2.  Google Scholar

[14]

Y. Wan and J. Tan, Standing waves for the Chern-Simons-Schrödinger systems without $(AR)$ condition, J. Math. Anal. Appl., 415 (2014), 422-434.  doi: 10.1016/j.jmaa.2014.01.084.  Google Scholar

[15]

Y. Wan and J. Tan, The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765-2786.  doi: 10.3934/dcds.2017119.  Google Scholar

[16]

M. Willem, Minimax Thorems, Progress in Nonlinear Differential Equations and their Applications, 24. Birkhäuser Boston, Inc., Boston MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[1]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[2]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[3]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[4]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[5]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[6]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[7]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[8]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[10]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[11]

Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021047

[12]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[13]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[14]

Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018

[15]

Guanwei Chen, Martin Schechter. Multiple solutions for Schrödinger lattice systems with asymptotically linear terms and perturbed terms. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021124

[16]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[17]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[18]

Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021055

[19]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[20]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

2019 Impact Factor: 1.233

Article outline

[Back to Top]