• Previous Article
    Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves
  • DCDS-S Home
  • This Issue
  • Next Article
    Extended Krylov subspace methods for solving Sylvester and Stein tensor equations
doi: 10.3934/dcdss.2021011

A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform

1. 

Department of Mathematics, University of Malakand, Chakdara Dir (Lower), Khyber Pakhtunkhawa, 18000, Pakistan

2. 

Department of Mathematics, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey

3. 

Institute of IR 4.0, The National University of Malaysia, Bangi, Malaysia

4. 

Department of Law, Economics and Human Sciences & Decisions Lab, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy

* Corresponding author: Ali Ahmadian

Received  June 2020 Revised  December 2020 Published  January 2021

In this research article, the techniques for computing an analytical solution of 2D fuzzy wave equation with some affecting term of force has been provided. Such type of achievement for the aforesaid solution is obtained by applying the notions of a Caputo non-integer derivative in the vague or uncertainty form. At the first attempt the fuzzy natural transform is applied for obtaining the series solution. Secondly the homotopy perturbation (HPM) technique is used, for the analysis of the proposed result by comparing the co-efficient of homotopy parameter $ q $ to get hierarchy of equation of different order for $ q $. For this purpose, some new results about Natural transform of an arbitrary derivative under uncertainty are established, for the first time in the literature. The solution has been assumed in term of infinite series, which break the problem to a small number of equations, for the respective investigation. The required results are then determined in a series solution form which goes rapidly towards the analytical result. The solution has two parts or branches in fuzzy form, one is lower branch and the other is upper branch. To illustrate the ability of the considered approach, we have proved some test problems.

Citation: Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021011
References:
[1]

N. A. Abdul Rahman and M. Z. Ahmad, Solving fuzzy fractional differential equations using fuzzy Sumudu transform, J. Nonlinear Sci. Appl., 10 (2017), 2620-2632.  doi: 10.22436/jnsa.010.05.28.  Google Scholar

[2]

H. AhmadA. R. SeadawyT. A. Khan and P. Thounthong, Analytic approximate solutions for some nonlinear parabolic dynamical wave equations, Taibah Uni. J. Sci., 14 (2020), 346-358.  doi: 10.1080/16583655.2020.1741943.  Google Scholar

[3]

S. Ahmed, A. Ullah, M. Arfan and K. Shah, On analysis of of the fractional mathematical model of rotravirous epidemic with the effect of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative, Chaos Solitons Fractals, 140 (2020), 110233, 20 pp. doi: 10.1016/j.chaos.2020.110233.  Google Scholar

[4]

A. AliA. R. Seadawy and D. Lu, Computational methods and traveling wave solutions for the fourth-order nonlinear ablowitz-kaup-newell-segur water wave dynamical equation via two methods and its applications, Open Physics J., 16 (2018), 219-226.  doi: 10.1515/phys-2018-0032.  Google Scholar

[5]

M. Al-Refai and T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Difference Equ., 2017 (2017), Paper No. 315, 12 pp. doi: 10.1186/s13662-017-1356-2.  Google Scholar

[6]

M. ArshadA. R. Seadawy and D. Lu, Modulation stability and optical soliton solutions of nonlinear schrödinger equation with higher order dispersion and nonlinear terms and its applications, Superlattice Microstr., 112 (2017), 422-434.  doi: 10.1016/j.spmi.2017.09.054.  Google Scholar

[7]

M. A. Asiru, Further properties of Sumudu transform and its applications, Internat. J. Math. Ed. Sci. Tech., 33 (2002), 441-449.  doi: 10.1080/002073902760047940.  Google Scholar

[8]

Z. Ayati and J. Biazar, On the convergence of Homotopy perturbation method, J. Egyptian Math. Soc., 23 (2015), 424-428.  doi: 10.1016/j.joems.2014.06.015.  Google Scholar

[9]

V. A. Baǐdosov, Fuzzy differential inclusion, J. Appl. Math. Mech., 54 (1990), 8-13.  doi: 10.1016/0021-8928(90)90080-T.  Google Scholar

[10]

F. B. M. BelgacemA. A. Karaballi and S. L. Kalla., Analytical, Investigations of the Sumudu transform and applications to integral production equations, Math. Prob. Eng., 2003 (2003), 103-118.  doi: 10.1155/S1024123X03207018.  Google Scholar

[11]

F. B. M. Belgacem and R. Silambarasan, Theory of Natural Transform:, Math. Eng. Sci. Aero. J., 3 (2012), 99-124.   Google Scholar

[12]

F. B. M. Belgacem and R. Silambarasan, Maxwells equations solutions by means of the Natural transform, I. J. Math. Eng. Sci. Aero., 3 (2012), 313-323.   Google Scholar

[13]

J. Biazar and H. Aminikhahb, Study of convergence of homotopy perturbation method for systems of partial differential equations, Comput. Math. Appl., 58 (2009), 2221-2230.  doi: 10.1016/j.camwa.2009.03.030.  Google Scholar

[14]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470868279.  Google Scholar

[15]

S. S. Chang and L. A. Zadeh, On Fuzzy Mapping and Control: In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, World Scientific, Singapor, 1996. Google Scholar

[16]

M. ChenY. FuX. Xue and C. Wu, Two point boundary value problems of umdamped uncertain dynamical system, Fuzzy Sets and Systems, 159 (2008), 2077-2089.  doi: 10.1016/j.fss.2008.03.006.  Google Scholar

[17]

D. Dubois and H. Prade, Towards fuzzy differential calculus part 1: Integration of fuzzy mappings, Fuzzy Sets and Systems, 8 (1982), 1-17.  doi: 10.1016/0165-0114(82)90025-2.  Google Scholar

[18]

R. A. El-Nabulsi, Induced gravity from two occurrences of actions, The European Phy. J. Plus., 132 (2017), 295. doi: 10.1140/epjp/i2017-11560-3.  Google Scholar

[19]

H. Eltayeb and A. Kiliçman, A note on solutions of wave, Laplace's and heat equations with convolution terms by using a double Laplace transform, Appl. Math. Lett., 21 (2008), 1324-1329.  doi: 10.1016/j.aml.2007.12.028.  Google Scholar

[20]

B. EsmailH. Sadeghi Goghary and S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Appl. Math. Comput., 161 (2005), 733-744.  doi: 10.1016/j.amc.2003.12.071.  Google Scholar

[21]

N. FarahA. R. SeadawyS. AhmadS. T. R. Rizvi and M. Younis, Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model, Optical and Quantum Electronics, 52 (2020), 1-15.   Google Scholar

[22]

R. GoetschelJr . and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.  doi: 10.1016/0165-0114(86)90026-6.  Google Scholar

[23]

F. HaqK. ShahG. Rahman and M. Shahzad, Numerical solution of fractional order smoking model via Laplace Adomian decomposition method, Alex. Eng. J., 57 (2018), 1061-1069.  doi: 10.1016/j.aej.2017.02.015.  Google Scholar

[24]

F. HaqK. ShahG. Rahman and M. Shahzad, Numerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells, Comput. Method. Diff. Equs., 5 (2017), 1-11.   Google Scholar

[25]

M. A. HelalA. R. Seadawy and M. H. Zekry, Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation, Appl. Math. Comput., 232 (2014), 1094-1103.  doi: 10.1016/j.amc.2014.01.066.  Google Scholar

[26]

T. HernandezRa sielV. R. RamirezA. Gustavo. I. Silva and U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemical Eng. Sci., 117 (2014), 217-228.   Google Scholar

[27]

A. Heinz, A boundary element procedure for transient wave propagations in two-dimensional isotropic elastic media, Finite Elements in Analysis and Design, 1 (1985), 313-322.   Google Scholar

[28]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[29]

M. Iqbal, A. R. Seadawy, O. H. Khalil and D. Lu, Propagation of long internal waves in density stratified ocean for the $(2+1)$-dimensional nonlinear nizhnik-novikov-vesselov dynamical equation, Results in Physics, 16 (2020), 102838. doi: 10.1016/j.rinp.2019.102838.  Google Scholar

[30]

M. Iqbal, A. R. Seadawy and D. Lu, Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods, Modern Phys. Lett. A, 33 (2018), 1850183, 13 pp. doi: 10.1142/S0217732318501833.  Google Scholar

[31] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 1996.   Google Scholar
[32]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.  Google Scholar

[33]

Z. H. Khan and W. A. Khan, N-transform properties and applications, Nust. J. Eng. Sci., 1 (2008), 127-133.   Google Scholar

[34]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[35]

V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, UK, 2009. Google Scholar

[36]

B. D. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3-16.   Google Scholar

[37]

D. Loonker and P. K. Banerji, Natural transform for distribution and Boehmian spaces., Math. Engg. Sci. Aerospace, 4 (2013), 69-76.   Google Scholar

[38]

D. LuA. R. Seadawy and A. Ali, Applications of exact traveling wave solutions of modified liouville and the symmetric regularized long wave equations via two new techniques, Results in Physics, 9 (2018), 1403-1410.  doi: 10.1016/j.rinp.2018.04.039.  Google Scholar

[39]

D. LuA. R. Seadawy and A. Ali, Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications, Results in Physics, 9 (2018), 313-320.  doi: 10.1016/j.rinp.2018.02.036.  Google Scholar

[40]

Y. S. OzkanE. Yasar and A. R. Seadawy, A third-order nonlinear schrödinger equation; the exact solutions, group-invariant solutions and conservation laws, Taibah Uni.J. Sci., 14 (2020), 585-597.   Google Scholar

[41] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.   Google Scholar
[42]

Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 28 (2005), 83-102.  doi: 10.1080/014957390523741.  Google Scholar

[43]

M. Ur. Rahman, M. Arfan, K. Shah and J. F. Gómez-Aguilar, Investigating a non-linear dynamical model of Covid-19 diesease under fuzzy caputo, randum an ABC fractional order derivative, Chaos-Solitons and Fractals, 140 (2020), 110232. doi: 10.1016/j.chaos.2020.110232.  Google Scholar

[44]

H. Richard, Elementary Applied Partial Differential Equations, Englewood Cliffs, NJ: Prentice Hall, 1983. Google Scholar

[45]

F. J. Rizzo and D. J. Shippy, A method of solution for certain problems of transient heat conduction, AIAA J., 8 (1970), 2004-2009.  doi: 10.2514/3.6038.  Google Scholar

[46]

Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15-67.  doi: 10.1115/1.3101682.  Google Scholar

[47]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives (Theory and Applications), Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[48]

A. R. Seadawy and K. El-Rashidy, Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma, Results in Physics, 8 (2018), 1216-1222.  doi: 10.1016/j.rinp.2018.01.053.  Google Scholar

[49]

A. R. SeadawyM. Iqbal and D. Lu, Nonlinear wave solutions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity, Taibah Uni. J. Sci., 13 (2019), 1060-1072.  doi: 10.1080/16583655.2019.1680170.  Google Scholar

[50]

K. Shah, M. A. Alqudah, F. Jarad and T. Abdeljawad, Semi-analytical study of Pine Wilt disease model with convex rate under Caputo-Fabrizio fractional order derivative, Chaos Solitons Fractals, 135 (2020), 109754, 9 pp. doi: 10.1016/j.chaos.2020.109754.  Google Scholar

[51]

H. Shatha, A. El-Ajou, S. Hadid, M. Al-Smadi and S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Solitons Fractals, 133 (2020), 109624, 10 pp. doi: 10.1016/j.chaos.2020.109624.  Google Scholar

[52]

M. R. Spiegel, Theory and Problems of Laplace Transforms, Schaum Publishing Co., New York, 1965.  Google Scholar

[53]

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis, 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

[54]

R. Toledo-HernandezV. Rico-RamirezA. Gustavo. Iglesias-Silva and M. Urmila, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemecal Eng. Sci., 117 (2014), 217-228.   Google Scholar

[55]

G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560, 8 pp. doi: 10.1016/j.aml.2020.106560.  Google Scholar

[56]

G. WangX. RenZ. Bai and W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137.  doi: 10.1016/j.aml.2019.04.024.  Google Scholar

[57]

G. Wang, Z. Yang, L. Zhang and D. Baleanu, Radial solutions of a nonlinear $k$-Hessian system involving a nonlinear operator, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105396, 13 pp. doi: 10.1016/j.cnsns.2020.105396.  Google Scholar

[58]

G. K. Watugala, Sumudu transform-a new integral transform to solve differential equations and control engineering problems., Math. Engrg. Indust., 6 (1998), 319-329.   Google Scholar

[59]

L. A. Zadeh, Fuzzy sets, Information and Cont., 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[60]

L. Zhang and W. Hou, Standing waves of nonlinear fractional $p$-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149, 6 pp. doi: 10.1016/j.aml.2019.106149.  Google Scholar

[61]

Y.-Z. ZhangA.-M. Yang and Y. Long, Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform, Thermal Science, 18 (2014), 677-681.  doi: 10.2298/TSCI130901152Z.  Google Scholar

show all references

References:
[1]

N. A. Abdul Rahman and M. Z. Ahmad, Solving fuzzy fractional differential equations using fuzzy Sumudu transform, J. Nonlinear Sci. Appl., 10 (2017), 2620-2632.  doi: 10.22436/jnsa.010.05.28.  Google Scholar

[2]

H. AhmadA. R. SeadawyT. A. Khan and P. Thounthong, Analytic approximate solutions for some nonlinear parabolic dynamical wave equations, Taibah Uni. J. Sci., 14 (2020), 346-358.  doi: 10.1080/16583655.2020.1741943.  Google Scholar

[3]

S. Ahmed, A. Ullah, M. Arfan and K. Shah, On analysis of of the fractional mathematical model of rotravirous epidemic with the effect of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative, Chaos Solitons Fractals, 140 (2020), 110233, 20 pp. doi: 10.1016/j.chaos.2020.110233.  Google Scholar

[4]

A. AliA. R. Seadawy and D. Lu, Computational methods and traveling wave solutions for the fourth-order nonlinear ablowitz-kaup-newell-segur water wave dynamical equation via two methods and its applications, Open Physics J., 16 (2018), 219-226.  doi: 10.1515/phys-2018-0032.  Google Scholar

[5]

M. Al-Refai and T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, Adv. Difference Equ., 2017 (2017), Paper No. 315, 12 pp. doi: 10.1186/s13662-017-1356-2.  Google Scholar

[6]

M. ArshadA. R. Seadawy and D. Lu, Modulation stability and optical soliton solutions of nonlinear schrödinger equation with higher order dispersion and nonlinear terms and its applications, Superlattice Microstr., 112 (2017), 422-434.  doi: 10.1016/j.spmi.2017.09.054.  Google Scholar

[7]

M. A. Asiru, Further properties of Sumudu transform and its applications, Internat. J. Math. Ed. Sci. Tech., 33 (2002), 441-449.  doi: 10.1080/002073902760047940.  Google Scholar

[8]

Z. Ayati and J. Biazar, On the convergence of Homotopy perturbation method, J. Egyptian Math. Soc., 23 (2015), 424-428.  doi: 10.1016/j.joems.2014.06.015.  Google Scholar

[9]

V. A. Baǐdosov, Fuzzy differential inclusion, J. Appl. Math. Mech., 54 (1990), 8-13.  doi: 10.1016/0021-8928(90)90080-T.  Google Scholar

[10]

F. B. M. BelgacemA. A. Karaballi and S. L. Kalla., Analytical, Investigations of the Sumudu transform and applications to integral production equations, Math. Prob. Eng., 2003 (2003), 103-118.  doi: 10.1155/S1024123X03207018.  Google Scholar

[11]

F. B. M. Belgacem and R. Silambarasan, Theory of Natural Transform:, Math. Eng. Sci. Aero. J., 3 (2012), 99-124.   Google Scholar

[12]

F. B. M. Belgacem and R. Silambarasan, Maxwells equations solutions by means of the Natural transform, I. J. Math. Eng. Sci. Aero., 3 (2012), 313-323.   Google Scholar

[13]

J. Biazar and H. Aminikhahb, Study of convergence of homotopy perturbation method for systems of partial differential equations, Comput. Math. Appl., 58 (2009), 2221-2230.  doi: 10.1016/j.camwa.2009.03.030.  Google Scholar

[14]

J. C. Butcher, Numerical Methods for Ordinary Differential Equations, John Wiley & Sons, Ltd., Chichester, 2003. doi: 10.1002/0470868279.  Google Scholar

[15]

S. S. Chang and L. A. Zadeh, On Fuzzy Mapping and Control: In Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems, World Scientific, Singapor, 1996. Google Scholar

[16]

M. ChenY. FuX. Xue and C. Wu, Two point boundary value problems of umdamped uncertain dynamical system, Fuzzy Sets and Systems, 159 (2008), 2077-2089.  doi: 10.1016/j.fss.2008.03.006.  Google Scholar

[17]

D. Dubois and H. Prade, Towards fuzzy differential calculus part 1: Integration of fuzzy mappings, Fuzzy Sets and Systems, 8 (1982), 1-17.  doi: 10.1016/0165-0114(82)90025-2.  Google Scholar

[18]

R. A. El-Nabulsi, Induced gravity from two occurrences of actions, The European Phy. J. Plus., 132 (2017), 295. doi: 10.1140/epjp/i2017-11560-3.  Google Scholar

[19]

H. Eltayeb and A. Kiliçman, A note on solutions of wave, Laplace's and heat equations with convolution terms by using a double Laplace transform, Appl. Math. Lett., 21 (2008), 1324-1329.  doi: 10.1016/j.aml.2007.12.028.  Google Scholar

[20]

B. EsmailH. Sadeghi Goghary and S. Abbasbandy, Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method, Appl. Math. Comput., 161 (2005), 733-744.  doi: 10.1016/j.amc.2003.12.071.  Google Scholar

[21]

N. FarahA. R. SeadawyS. AhmadS. T. R. Rizvi and M. Younis, Interaction properties of soliton molecules and Painleve analysis for nano bioelectronics transmission model, Optical and Quantum Electronics, 52 (2020), 1-15.   Google Scholar

[22]

R. GoetschelJr . and W. Voxman, Elementary fuzzy calculus, Fuzzy Sets and Systems, 18 (1986), 31-43.  doi: 10.1016/0165-0114(86)90026-6.  Google Scholar

[23]

F. HaqK. ShahG. Rahman and M. Shahzad, Numerical solution of fractional order smoking model via Laplace Adomian decomposition method, Alex. Eng. J., 57 (2018), 1061-1069.  doi: 10.1016/j.aej.2017.02.015.  Google Scholar

[24]

F. HaqK. ShahG. Rahman and M. Shahzad, Numerical analysis of fractional order model of HIV-1 infection of CD4+ T-cells, Comput. Method. Diff. Equs., 5 (2017), 1-11.   Google Scholar

[25]

M. A. HelalA. R. Seadawy and M. H. Zekry, Stability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation, Appl. Math. Comput., 232 (2014), 1094-1103.  doi: 10.1016/j.amc.2014.01.066.  Google Scholar

[26]

T. HernandezRa sielV. R. RamirezA. Gustavo. I. Silva and U. M. Diwekar, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemical Eng. Sci., 117 (2014), 217-228.   Google Scholar

[27]

A. Heinz, A boundary element procedure for transient wave propagations in two-dimensional isotropic elastic media, Finite Elements in Analysis and Design, 1 (1985), 313-322.   Google Scholar

[28]

R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, 2000. doi: 10.1142/9789812817747.  Google Scholar

[29]

M. Iqbal, A. R. Seadawy, O. H. Khalil and D. Lu, Propagation of long internal waves in density stratified ocean for the $(2+1)$-dimensional nonlinear nizhnik-novikov-vesselov dynamical equation, Results in Physics, 16 (2020), 102838. doi: 10.1016/j.rinp.2019.102838.  Google Scholar

[30]

M. Iqbal, A. R. Seadawy and D. Lu, Construction of solitary wave solutions to the nonlinear modified Kortewege-de Vries dynamical equation in unmagnetized plasma via mathematical methods, Modern Phys. Lett. A, 33 (2018), 1850183, 13 pp. doi: 10.1142/S0217732318501833.  Google Scholar

[31] A. Iserles, A First Course in the Numerical Analysis of Differential Equations, Cambridge University Press, 1996.   Google Scholar
[32]

O. Kaleva, Fuzzy differential equations, Fuzzy Sets and Systems, 24 (1987), 301-317.  doi: 10.1016/0165-0114(87)90029-7.  Google Scholar

[33]

Z. H. Khan and W. A. Khan, N-transform properties and applications, Nust. J. Eng. Sci., 1 (2008), 127-133.   Google Scholar

[34]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Application of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.  Google Scholar

[35]

V. Lakshmikantham, S. Leela and J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, UK, 2009. Google Scholar

[36]

B. D. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3-16.   Google Scholar

[37]

D. Loonker and P. K. Banerji, Natural transform for distribution and Boehmian spaces., Math. Engg. Sci. Aerospace, 4 (2013), 69-76.   Google Scholar

[38]

D. LuA. R. Seadawy and A. Ali, Applications of exact traveling wave solutions of modified liouville and the symmetric regularized long wave equations via two new techniques, Results in Physics, 9 (2018), 1403-1410.  doi: 10.1016/j.rinp.2018.04.039.  Google Scholar

[39]

D. LuA. R. Seadawy and A. Ali, Dispersive traveling wave solutions of the equal-width and modified equal-width equations via mathematical methods and its applications, Results in Physics, 9 (2018), 313-320.  doi: 10.1016/j.rinp.2018.02.036.  Google Scholar

[40]

Y. S. OzkanE. Yasar and A. R. Seadawy, A third-order nonlinear schrödinger equation; the exact solutions, group-invariant solutions and conservation laws, Taibah Uni.J. Sci., 14 (2020), 585-597.   Google Scholar

[41] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, Academic Press, New York, 1999.   Google Scholar
[42]

Y. Z. Povstenko, Fractional heat conduction equation and associated thermal stress, J. Thermal Stresses, 28 (2005), 83-102.  doi: 10.1080/014957390523741.  Google Scholar

[43]

M. Ur. Rahman, M. Arfan, K. Shah and J. F. Gómez-Aguilar, Investigating a non-linear dynamical model of Covid-19 diesease under fuzzy caputo, randum an ABC fractional order derivative, Chaos-Solitons and Fractals, 140 (2020), 110232. doi: 10.1016/j.chaos.2020.110232.  Google Scholar

[44]

H. Richard, Elementary Applied Partial Differential Equations, Englewood Cliffs, NJ: Prentice Hall, 1983. Google Scholar

[45]

F. J. Rizzo and D. J. Shippy, A method of solution for certain problems of transient heat conduction, AIAA J., 8 (1970), 2004-2009.  doi: 10.2514/3.6038.  Google Scholar

[46]

Y. A. Rossikhin and M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15-67.  doi: 10.1115/1.3101682.  Google Scholar

[47]

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives (Theory and Applications), Gordon and Breach Science Publishers, Yverdon, 1993.  Google Scholar

[48]

A. R. Seadawy and K. El-Rashidy, Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma, Results in Physics, 8 (2018), 1216-1222.  doi: 10.1016/j.rinp.2018.01.053.  Google Scholar

[49]

A. R. SeadawyM. Iqbal and D. Lu, Nonlinear wave solutions of the Kudryashov-Sinelshchikov dynamical equation in mixtures liquid-gas bubbles under the consideration of heat transfer and viscosity, Taibah Uni. J. Sci., 13 (2019), 1060-1072.  doi: 10.1080/16583655.2019.1680170.  Google Scholar

[50]

K. Shah, M. A. Alqudah, F. Jarad and T. Abdeljawad, Semi-analytical study of Pine Wilt disease model with convex rate under Caputo-Fabrizio fractional order derivative, Chaos Solitons Fractals, 135 (2020), 109754, 9 pp. doi: 10.1016/j.chaos.2020.109754.  Google Scholar

[51]

H. Shatha, A. El-Ajou, S. Hadid, M. Al-Smadi and S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Solitons Fractals, 133 (2020), 109624, 10 pp. doi: 10.1016/j.chaos.2020.109624.  Google Scholar

[52]

M. R. Spiegel, Theory and Problems of Laplace Transforms, Schaum Publishing Co., New York, 1965.  Google Scholar

[53]

L. Stefanini and B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Analysis, 71 (2009), 1311-1328.  doi: 10.1016/j.na.2008.12.005.  Google Scholar

[54]

R. Toledo-HernandezV. Rico-RamirezA. Gustavo. Iglesias-Silva and M. Urmila, A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions, Chemecal Eng. Sci., 117 (2014), 217-228.   Google Scholar

[55]

G. Wang and X. Ren, Radial symmetry of standing waves for nonlinear fractional Laplacian Hardy-Schrödinger systems, Appl. Math. Lett., 110 (2020), 106560, 8 pp. doi: 10.1016/j.aml.2020.106560.  Google Scholar

[56]

G. WangX. RenZ. Bai and W. Hou, Radial symmetry of standing waves for nonlinear fractional Hardy-Schrödinger equation, Appl. Math. Lett., 96 (2019), 131-137.  doi: 10.1016/j.aml.2019.04.024.  Google Scholar

[57]

G. Wang, Z. Yang, L. Zhang and D. Baleanu, Radial solutions of a nonlinear $k$-Hessian system involving a nonlinear operator, Commun. Nonlinear Sci. Numer. Simul., 91 (2020), 105396, 13 pp. doi: 10.1016/j.cnsns.2020.105396.  Google Scholar

[58]

G. K. Watugala, Sumudu transform-a new integral transform to solve differential equations and control engineering problems., Math. Engrg. Indust., 6 (1998), 319-329.   Google Scholar

[59]

L. A. Zadeh, Fuzzy sets, Information and Cont., 8 (1965), 338-353.  doi: 10.1016/S0019-9958(65)90241-X.  Google Scholar

[60]

L. Zhang and W. Hou, Standing waves of nonlinear fractional $p$-Laplacian Schrödinger equation involving logarithmic nonlinearity, Appl. Math. Lett., 102 (2020), 106149, 6 pp. doi: 10.1016/j.aml.2019.106149.  Google Scholar

[61]

Y.-Z. ZhangA.-M. Yang and Y. Long, Initial boundary value problem for fractal heat equation in the semi-infinite region by Yang-Laplace transform, Thermal Science, 18 (2014), 677-681.  doi: 10.2298/TSCI130901152Z.  Google Scholar

Figure 1.  Representation of three dimensional(3D) graph of fuzzy solution at four different fractional order of $ \theta $ with $ \texttt{y} = 0.5, \texttt{t} = 0.5, $ of example 1. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 2.  Representation of three dimensional(3D) graph of fuzzy solution at four other different fractional order of $ \theta $ with $ \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 1. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 3.  Representation of two dimensional(2D) graph of fuzzy solution at four different fractional order of $ \theta $ with $ \texttt{x} = 0.5, \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 1. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 4.  Representation of two dimensional(2D) graph of fuzzy solution at four other different fractional order of $ \theta $ with $ \texttt{x} = 0.5, \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 1. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 5.  Representation of comparison of fuzzy solution for upper and lower branches of example 1 by LADM and NTHPM in three dimension(3D). The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 6.  Representation of comparison of fuzzy solution for upper and lower branches of example 1 by LADM and NTHPM in two dimension(2D). The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 7.  Representation of three dimensional(3D) graph of fuzzy solution at four different fractional order of $ \theta $ with $ \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 2. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 8.  Representation of three dimensional(3D) graph of fuzzy solution at four other different fractional order of $ \theta $ with $ \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 2. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 9.  Representation of two dimensional(2D) graph of fuzzy solution at four different fractional order of $ \theta $ with $ \texttt{x} = 0.5, \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 2. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 10.  Representation of two dimensional(2D) graph of fuzzy solution at four other different fractional order of $ \theta $ with $ \texttt{x} = 0.5, \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 2. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 11.  Representation of comparison of fuzzy solution for upper and lower branches of example 2 by LADM and NTHPM in three dimension(3D). The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 12.  Representation of comparison of fuzzy solution for upper and lower branches of example 2 by LADM and NTHPM in two dimension(2D). The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 13.  Representation of three dimensional(3D) graph of fuzzy solution at four different fractional order of $ \theta $ with $ \texttt{y} = 0.5, \texttt{t} = 0.5, $ of example 3. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 14.  Representation of three dimensional(3D) graph of fuzzy solution at four other different fractional order of $ \theta $ with $ \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 3. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 15.  Representation of two dimensional(2D) graph of fuzzy solution at four different fractional order of $ \theta $ with $ \texttt{x} = 0.5, \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 3. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 16.  Representation of two dimensional(2D) graph of fuzzy solution at four other different fractional order of $ \theta $ with $ \texttt{x} = 0.5, \texttt{y} = 0.5, \texttt{t} = 0.5 $ of example 3. The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 17.  Representation of comparison of fuzzy solution for upper and lower branches of example 3 by LADM and NTHPM in three dimension(3D). The two similar color legends represents upper and lower portion of fuzzy solution respectively
Figure 18.  Representation of comparison of fuzzy solution for upper and lower branches of example 3 by LADM and NTHPM in two dimension(2D). The two similar color legends represents upper and lower portion of fuzzy solution respectively
[1]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[2]

Javad Taheri, Abolfazl Mirzazadeh. Optimization of inventory system with defects, rework failure and two types of errors under crisp and fuzzy approach. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021068

[3]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[4]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[5]

Cheng-Kai Hu, Fung-Bao Liu, Hong-Ming Chen, Cheng-Feng Hu. Network data envelopment analysis with fuzzy non-discretionary factors. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1795-1807. doi: 10.3934/jimo.2020046

[6]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[7]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[8]

Yuanqing Xu, Xiaoxiao Zheng, Jie Xin. New explicit and exact traveling wave solutions of (3+1)-dimensional KP equation. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021006

[9]

Mia Jukić, Hermen Jan Hupkes. Dynamics of curved travelling fronts for the discrete Allen-Cahn equation on a two-dimensional lattice. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3163-3209. doi: 10.3934/dcds.2020402

[10]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[11]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[12]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[13]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[14]

Shuting Chen, Zengji Du, Jiang Liu, Ke Wang. The dynamic properties of a generalized Kawahara equation with Kuramoto-Sivashinsky perturbation. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021098

[15]

Zhigang Pan, Chanh Kieu, Quan Wang. Hopf bifurcations and transitions of two-dimensional Quasi-Geostrophic flows. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021025

[16]

Markus Harju, Jaakko Kultima, Valery Serov, Teemu Tyni. Two-dimensional inverse scattering for quasi-linear biharmonic operator. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021026

[17]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[18]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[19]

Tomoyuki Tanaka, Kyouhei Wakasa. On the critical decay for the wave equation with a cubic convolution in 3D. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021048

[20]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (40)
  • HTML views (142)
  • Cited by (0)

[Back to Top]