doi: 10.3934/dcdss.2021012
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Existence and regularity results for a singular parabolic equations with degenerate coercivity

Laboratory LIPIM, National School of Applied Sciences Khouribga, Sultan Moulay Slimane University, Morocco

* Corresponding author: yelhadfi@gmail.com

Received  August 2020 Revised  January 2021 Early access January 2021

The aim of this paper is to prove existence and regularity of solutions for the following nonlinear singular parabolic problem
$ \left\{ \begin{array}{lll} \dfrac{\partial u}{\partial t}-\mbox{div}\left( \dfrac{a(x,t,u,\nabla u)}{(1+|u|)^{\theta(p-1)}}\right) +g(x,t,u) = \dfrac{f}{u^{\gamma}} &\mbox{in}&\,\, Q,\\ u(x,0) = 0 &\mbox{on} & \Omega,\\ u = 0 &\mbox{on} &\,\, \Gamma. \end{array} \right. $
Here
$ \Omega $
is a bounded open subset of
$ I\!\!R^{N} (N>p\geq 2), T>0 $
and
$ f $
is a non-negative function that belong to some Lebesgue space,
$ f\in L^{m}(Q) $
,
$ Q = \Omega \times(0,T) $
,
$ \Gamma = \partial\Omega\times(0,T) $
,
$ g(x,t,u) = |u|^{s-1}u $
,
$ s\geq 1, $
$ 0\leq\theta< 1 $
and
$ 0<\gamma<1. $
Citation: Mounim El Ouardy, Youssef El Hadfi, Aziz Ifzarne. Existence and regularity results for a singular parabolic equations with degenerate coercivity. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021012
References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Existence and regularity results for some nonlinear parabolic equations., Adv. Math. Sci. Appl., 9 (1999), 1017–1031.  Google Scholar

[2]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237–258. doi: 10.1006/jfan.1996.3040.  Google Scholar

[3]

L. Boccardo, T. Gallët and J. L. Vazquez, Solutions of nonlinear parabolic equations without growth restrictions on the data, Electron. J. Differential Equations, (2001), No.60, 20 pp.  Google Scholar

[4]

G. R. Cirmi and M. M. Porzio, $L^{\infty}-$Solution for some nonlinear degenerate elliptic and parabolic equations, Ann. Mat. Pura Appl. (4), 169 (1995), 67–86. doi: 10.1007/BF01759349.  Google Scholar

[5]

A. Dall'Aglio and L. Orsina, Existence results for some nonlinear parabolic equations with nonregular data, Differential Integral Equations, 5 (1992), 1335–1354.  Google Scholar

[6]

I. de Bonis and L. M. De Cave, Degenerate parabolic equations with singular lower order terms, Differential Integral Equations, 27 (2014), 949–976.  Google Scholar

[7]

L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Nonlinear Anal., 84 (2013), 181–195. doi: 10.3233/ASY-131173.  Google Scholar

[8]

L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and sigular lower order trems in classical direchlet problems with $L^{1}$ data, J. Elliptic Parabol. Equ., 2 (2016), 73–85. doi: 10.1007/BF03377393.  Google Scholar

[9]

L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Anal., 128 (2015), 391–411. doi: 10.1016/j.na.2015.08.005.  Google Scholar

[10]

Y. El Hadfi, A. Benkirane and A. Youssfi, Existence and regularity results for parabolic equations with degenerate coercivity, Complex Var. Elliptic Equ., 63 (2018), 715–729. doi: 10.1080/17476933.2017.1332596.  Google Scholar

[11]

W. Fulks and J. S. Maybee, A singular non-linear equation, Osaka Math. J. 12 (1960), 1–19.  Google Scholar

[12]

J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary-value problems for second-order ordinary differential equations, J. Differential Equations, 79 (1989), 62–78. doi: 10.1016/0022-0396(89)90113-7.  Google Scholar

[13]

N. Grenon and A. Mercaldo, Existence and regularity results for solutions to nonlinear parabolic equations, Adv. Differential Equations, 10 (2005), 1007-1034.   Google Scholar

[14]

F. Li, Existence and regularity results for some parabolic equations with degenerate coercivity, Ann. Acad. Sci. Fenn. Math., 37 (2012), 605–633. doi: 10.5186/aasfm.2012.3738.  Google Scholar

[15]

F.-Q. Li, Regularity of solutions to nonlinear parabolic equations with a lower-order term, Potential Anal. 16 (2002), 393–400. doi: 10.1023/A:1014856614825.  Google Scholar

[16]

J.-L. Lions, Quelques méthodes de résolutions des problÈmes aux limites nonlinéaires, Dunod, Gautthier-Villars, Paris, 1969.  Google Scholar

[17]

A. Nachman and A. Challegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275–281. doi: 10.1137/0138024.  Google Scholar

[18]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162.  Google Scholar

[19]

P. Nowsad, On the integral equation $\kappa f = 1/f$ arising in a problem in communication, J. Math. Anal. Appl., 14 (1966), 484–492. doi: 10.1016/0022-247X(66)90008-4.  Google Scholar

[20]

F. Oliva and F. Petitta, A nonlinear parabolic problem with singular terms and nonregular data, Nonlinear Anal., 194 (2020), 111472, 13 pp. doi: 10.1016/j.na.2019.02.025.  Google Scholar

[21]

F. Oliva and F. Pettita, On singular elliptic equations with measures sources, ESAIM Control Optim. Calc. Var., 22 (2016), 289–308. doi: 10.1051/cocv/2015004.  Google Scholar

[22]

A. Sbai and Y. El hadfi, Degenerate elliptic problem with a singular nonlinearity, arXiv: 2005.08383. Google Scholar

[23]

A. Sbai and Y. El hadfi, Regularizing effect of absorption terms in singular and degenerate elliptic problems, arXiv: 2008.03597. Google Scholar

[24]

J. Simon, Compact sets in the space $L^{p}(0, T; B).$, Ann. Mat. Pura Appl., 146 (1987), 65–96. doi: 10.1007/BF01762360.  Google Scholar

[25]

G. Stampacchia, Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189–258. doi: 10.5802/aif.204.  Google Scholar

[26]

A. Youssfi, A. Benkirane and Y. EL Hadfi, On bounded solutions for nonlinear parabolic equations with degenerate coercivity, Mediterr. J. Math., 13 (2016), 3029–3040. doi: 10.1007/s00009-015-0670-8.  Google Scholar

show all references

References:
[1]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Existence and regularity results for some nonlinear parabolic equations., Adv. Math. Sci. Appl., 9 (1999), 1017–1031.  Google Scholar

[2]

L. Boccardo, A. Dall'Aglio, T. Gallouët and L. Orsina, Nonlinear parabolic equations with measure data, J. Funct. Anal., 147 (1997), 237–258. doi: 10.1006/jfan.1996.3040.  Google Scholar

[3]

L. Boccardo, T. Gallët and J. L. Vazquez, Solutions of nonlinear parabolic equations without growth restrictions on the data, Electron. J. Differential Equations, (2001), No.60, 20 pp.  Google Scholar

[4]

G. R. Cirmi and M. M. Porzio, $L^{\infty}-$Solution for some nonlinear degenerate elliptic and parabolic equations, Ann. Mat. Pura Appl. (4), 169 (1995), 67–86. doi: 10.1007/BF01759349.  Google Scholar

[5]

A. Dall'Aglio and L. Orsina, Existence results for some nonlinear parabolic equations with nonregular data, Differential Integral Equations, 5 (1992), 1335–1354.  Google Scholar

[6]

I. de Bonis and L. M. De Cave, Degenerate parabolic equations with singular lower order terms, Differential Integral Equations, 27 (2014), 949–976.  Google Scholar

[7]

L. M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Nonlinear Anal., 84 (2013), 181–195. doi: 10.3233/ASY-131173.  Google Scholar

[8]

L. M. De Cave and F. Oliva, On the regularizing effect of some absorption and sigular lower order trems in classical direchlet problems with $L^{1}$ data, J. Elliptic Parabol. Equ., 2 (2016), 73–85. doi: 10.1007/BF03377393.  Google Scholar

[9]

L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Anal., 128 (2015), 391–411. doi: 10.1016/j.na.2015.08.005.  Google Scholar

[10]

Y. El Hadfi, A. Benkirane and A. Youssfi, Existence and regularity results for parabolic equations with degenerate coercivity, Complex Var. Elliptic Equ., 63 (2018), 715–729. doi: 10.1080/17476933.2017.1332596.  Google Scholar

[11]

W. Fulks and J. S. Maybee, A singular non-linear equation, Osaka Math. J. 12 (1960), 1–19.  Google Scholar

[12]

J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary-value problems for second-order ordinary differential equations, J. Differential Equations, 79 (1989), 62–78. doi: 10.1016/0022-0396(89)90113-7.  Google Scholar

[13]

N. Grenon and A. Mercaldo, Existence and regularity results for solutions to nonlinear parabolic equations, Adv. Differential Equations, 10 (2005), 1007-1034.   Google Scholar

[14]

F. Li, Existence and regularity results for some parabolic equations with degenerate coercivity, Ann. Acad. Sci. Fenn. Math., 37 (2012), 605–633. doi: 10.5186/aasfm.2012.3738.  Google Scholar

[15]

F.-Q. Li, Regularity of solutions to nonlinear parabolic equations with a lower-order term, Potential Anal. 16 (2002), 393–400. doi: 10.1023/A:1014856614825.  Google Scholar

[16]

J.-L. Lions, Quelques méthodes de résolutions des problÈmes aux limites nonlinéaires, Dunod, Gautthier-Villars, Paris, 1969.  Google Scholar

[17]

A. Nachman and A. Challegari, A nonlinear singular boundary value problem in the theory of pseudoplastic fluids, SIAM J. Appl. Math., 38 (1980), 275–281. doi: 10.1137/0138024.  Google Scholar

[18]

L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1959), 115–162.  Google Scholar

[19]

P. Nowsad, On the integral equation $\kappa f = 1/f$ arising in a problem in communication, J. Math. Anal. Appl., 14 (1966), 484–492. doi: 10.1016/0022-247X(66)90008-4.  Google Scholar

[20]

F. Oliva and F. Petitta, A nonlinear parabolic problem with singular terms and nonregular data, Nonlinear Anal., 194 (2020), 111472, 13 pp. doi: 10.1016/j.na.2019.02.025.  Google Scholar

[21]

F. Oliva and F. Pettita, On singular elliptic equations with measures sources, ESAIM Control Optim. Calc. Var., 22 (2016), 289–308. doi: 10.1051/cocv/2015004.  Google Scholar

[22]

A. Sbai and Y. El hadfi, Degenerate elliptic problem with a singular nonlinearity, arXiv: 2005.08383. Google Scholar

[23]

A. Sbai and Y. El hadfi, Regularizing effect of absorption terms in singular and degenerate elliptic problems, arXiv: 2008.03597. Google Scholar

[24]

J. Simon, Compact sets in the space $L^{p}(0, T; B).$, Ann. Mat. Pura Appl., 146 (1987), 65–96. doi: 10.1007/BF01762360.  Google Scholar

[25]

G. Stampacchia, Le probléme de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189–258. doi: 10.5802/aif.204.  Google Scholar

[26]

A. Youssfi, A. Benkirane and Y. EL Hadfi, On bounded solutions for nonlinear parabolic equations with degenerate coercivity, Mediterr. J. Math., 13 (2016), 3029–3040. doi: 10.1007/s00009-015-0670-8.  Google Scholar

[1]

Gisella Croce. An elliptic problem with degenerate coercivity and a singular quadratic gradient lower order term. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 507-530. doi: 10.3934/dcdss.2012.5.507

[2]

Rosaria Di Nardo. Nonlinear parabolic equations with a lower order term and $L^1$ data. Communications on Pure &amp; Applied Analysis, 2010, 9 (4) : 929-942. doi: 10.3934/cpaa.2010.9.929

[3]

Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989

[4]

Lucio Boccardo, Maria Michaela Porzio. Some degenerate parabolic problems: Existence and decay properties. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 617-629. doi: 10.3934/dcdss.2014.7.617

[5]

U. Biccari, V. Hernández-Santamaría, J. Vancostenoble. Existence and cost of boundary controls for a degenerate/singular parabolic equation. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021032

[6]

Maoji Ri, Shuibo Huang, Canyun Huang. Non-existence of solutions to some degenerate coercivity elliptic equations involving measures data. Electronic Research Archive, 2020, 28 (1) : 165-182. doi: 10.3934/era.2020011

[7]

Rubén Figueroa, Rodrigo López Pouso, Jorge Rodríguez–López. Existence and multiplicity results for second-order discontinuous problems via non-ordered lower and upper solutions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 617-633. doi: 10.3934/dcdsb.2019257

[8]

Micol Amar, Virginia De Cicco. Lower semicontinuity for polyconvex integrals without coercivity assumptions. Evolution Equations & Control Theory, 2014, 3 (3) : 363-372. doi: 10.3934/eect.2014.3.363

[9]

Judith Vancostenoble. Improved Hardy-Poincaré inequalities and sharp Carleman estimates for degenerate/singular parabolic problems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 761-790. doi: 10.3934/dcdss.2011.4.761

[10]

Teemu Lukkari, Mikko Parviainen. Stability of degenerate parabolic Cauchy problems. Communications on Pure &amp; Applied Analysis, 2015, 14 (1) : 201-216. doi: 10.3934/cpaa.2015.14.201

[11]

Annamaria Canino, Elisa De Giorgio, Berardino Sciunzi. Second order regularity for degenerate nonlinear elliptic equations. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 4231-4242. doi: 10.3934/dcds.2018184

[12]

Lucio Boccardo. Some Dirichlet problems with bad coercivity. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 319-329. doi: 10.3934/dcds.2002.8.319

[13]

Daniela Giachetti, Maria Michaela Porzio. Global existence for nonlinear parabolic equations with a damping term. Communications on Pure &amp; Applied Analysis, 2009, 8 (3) : 923-953. doi: 10.3934/cpaa.2009.8.923

[14]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[15]

Changchun Liu. A fourth order nonlinear degenerate parabolic equation. Communications on Pure &amp; Applied Analysis, 2008, 7 (3) : 617-630. doi: 10.3934/cpaa.2008.7.617

[16]

Shaohua Chen. Boundedness and blowup solutions for quasilinear parabolic systems with lower order terms. Communications on Pure &amp; Applied Analysis, 2009, 8 (2) : 587-600. doi: 10.3934/cpaa.2009.8.587

[17]

Charles A. Stuart. Stability analysis for a family of degenerate semilinear parabolic problems. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 5297-5337. doi: 10.3934/dcds.2018234

[18]

Lin Yan, Bin Wu. Null controllability for a class of stochastic singular parabolic equations with the convection term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021182

[19]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[20]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (197)
  • HTML views (307)
  • Cited by (0)

[Back to Top]