doi: 10.3934/dcdss.2021014

Energetics and coarsening analysis of a simplified non-linear surface growth model

1. 

ENSA, LIPIM laboratory, University Sultan Moulay Slimane, Khouribga, Morocco

2. 

FST, LAMAI Laboratory, University Cadi Ayyad, Marrakesh, Morocco

* Corresponding author: Hamza Khalfi

Received  August 2020 Revised  December 2020 Early access  January 2021

We study a simplified multidimensional version of the phenomenological surface growth continuum model derived in [6]. The considered model is a partial differential equation for the surface height profile
$ u $
which possesses the following free energy functional:
$ E(u) = \int_{\Omega} \left[ \frac{1}{2} \ln\left(1+\left|\nabla u \right|^2\right) - \left|\nabla u \right| \arctan\left(\left|\nabla u \right|\right) + \frac{1}{2} \left|\Delta u \right|^2 \right] {\rm d}x, $
where
$ \Omega $
is the domain of a fixed support on which the growth is carried out. The term
$ \left|\Delta u \right|^2 $
designates the standard surface diffusion in contrast to the second order term which phenomenologically describes the growth instability. The energy above is mainly carried out in regions of higher surface slope
$ \left( \left|\nabla u \right| \right) $
. Hence minimizing such energy corresponds to reducing surface defects during the growth process from a given initial surface configuration. Our analysis is concerned with the energetic and coarsening behaviours of the equilibrium solution. The existence of global energy minimizers and a scaling argument are used to construct a sequence of equilibrium solutions with different wavelength. We apply our minimum energy estimates to derive bounds in terms of the linear system size
$ \left| \Omega \right| $
for the characteristic interface width and average slope. We also derive a stable numerical scheme based on the convex-concave decomposition of the energy functional and study its properties while accommodating these results with 1d and 2d numerical simulations.
Citation: Hamza Khalfi, Amal Aarab, Nour Eddine Alaa. Energetics and coarsening analysis of a simplified non-linear surface growth model. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021014
References:
[1]

W. ChenS. CondeC. WangX. Wang and S. M. Wise, A linear energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 52 (2012), 546-562.  doi: 10.1007/s10915-011-9559-2.  Google Scholar

[2]

W. ChenC. WangX. Wang and S. M. Wise, A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 59 (2014), 574-601.  doi: 10.1007/s10915-013-9774-0.  Google Scholar

[3]

L. ChenJ. Zhao and X. Yang, Regularized linear schemes for the molecular beam epitaxy model with slope selection, Appl. Numer. Math., 128 (2018), 139-156.  doi: 10.1016/j.apnum.2018.02.004.  Google Scholar

[4]

K. Cheng, Z. Qiao and C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability, J. Sci. Comput., 81 (2019), 154–185. arXiv: 1903.03296. doi: 10.1007/s10915-019-01008-y.  Google Scholar

[5]

Q. ChengJ. Shen and X. Yang, Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach, J. Sci. Comput., 78 (2019), 1467-1487.  doi: 10.1007/s10915-018-0832-5.  Google Scholar

[6]

Z. CsahókC. Misbah and A. Valance, A class of nonlinear front evolution equations derived from geometry and conservation, Phys. D, 128 (1999), 87-100.  doi: 10.1016/S0167-2789(98)00320-0.  Google Scholar

[7]

L. Golubović, Interfacial coarsening in epitaxial growth models without slope selection, Phys. Rev. Lett., 78 (1997), 90. doi: 10.1103/PhysRevLett.78.90.  Google Scholar

[8]

M. GrasselliG. Mola and A. Yagi, On the longtime behavior of solutions to a model for epitaxial growth, Osaka J. Math., 48 (2011), 987-1004.   Google Scholar

[9]

M. Guedda and H. Trojette, Coarsening in an interfacial equation without slope selection revisited: Analytical results, Phys. Lett. A, 374 (2010), 4308-4311.  doi: 10.1016/j.physleta.2010.08.052.  Google Scholar

[10]

L. JuX. LiZ. Qiao and H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comp., 87 (2018), 1859-1885.  doi: 10.1090/mcom/3262.  Google Scholar

[11]

H. KhalfiN. E. Alaa and M. Guedda, Coarsening properties of a nonlinear front evolution equation, J. Adv. Math. Stud., 11 (2018), 295-305.   Google Scholar

[12]

H. KhalfiN. E. Alaa and M. Guedda, Period steady-state identification for a nonlinear front evolution equation using genetic algorithms, International Journal of Bio-Inspired Computation, 12 (2018), 196-202.  doi: 10.1504/IJBIC.2018.094647.  Google Scholar

[13]

H. KhalfiM. PierreN. E. Alaa and M. Guedda, Convergence to equilibrium of a DC algorithm for an epitaxial growth model., Int. J. Numer. Anal. Model., 16 (2019), 98-411.   Google Scholar

[14]

H. G. LeeJ. Shin and J.-Y. Lee, A second-order operator splitting fourier spectral method for models of epitaxial thin film growth, J. Sci. Comput., 71 (2017), 1303-1318.  doi: 10.1007/s10915-016-0340-4.  Google Scholar

[15]

W. LiW. ChenC. WangY. Yan and R. He, A second order energy stable linear scheme for a thin film model without slope selection, J. Sci. Comput., 76 (2018), 1905-1937.  doi: 10.1007/s10915-018-0693-y.  Google Scholar

[16]

B. Li and J.-G. Liu, Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), 713-743.  doi: 10.1017/S095679250300528X.  Google Scholar

[17]

B. Li and J.-G. Liu, Epitaxial growth without slope selection: Energetics, coarsening, and dynamic scaling, J. Nonlinear Sci., 14 (2004), 429-451.  doi: 10.1007/s00332-004-0634-9.  Google Scholar

[18]

C. Misbah, O. Pierre-Louis and Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, Reviews of Modern Physics, 82 (2010), 981. doi: 10.1103/RevModPhys.82.981.  Google Scholar

[19]

O. Pierre-Louis, C. Misbah, Y. Saito, J. Krug and P. Politi, New nonlinear evolution equation for steps during molecular beam epitaxy on vicinal surfaces, Physical Review Letters, 80 (1998), 4221. doi: 10.1103/PhysRevLett.80.4221.  Google Scholar

[20]

P. Politi and J. Villain, Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model, Physical Review B, 54 (1996), 5114. doi: 10.1103/PhysRevB.54.5114.  Google Scholar

[21]

P. Politi and C. Misbah, Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law, Phys. Rev. E, 73 (2006), 036133, 15 pp. doi: 10.1103/PhysRevE.73.036133.  Google Scholar

[22]

Z. QiaoZ.-Z. Sun and Z. Zhang, Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection, Math. Comp., 84 (2015), 653-674.  doi: 10.1090/S0025-5718-2014-02874-3.  Google Scholar

[23]

M. RostP. Šmilauer and J. Krug, Unstable epitaxy on vicinal surfaces, Surface Science, 369 (1996), 393-402.  doi: 10.1016/S0039-6028(96)00905-3.  Google Scholar

[24]

R. Schwoebel, Step motion on crystal surfaces. II, Journal of Applied Physics, 40 (1969), 614-618.  doi: 10.1063/1.1657442.  Google Scholar

show all references

References:
[1]

W. ChenS. CondeC. WangX. Wang and S. M. Wise, A linear energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 52 (2012), 546-562.  doi: 10.1007/s10915-011-9559-2.  Google Scholar

[2]

W. ChenC. WangX. Wang and S. M. Wise, A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection, J. Sci. Comput., 59 (2014), 574-601.  doi: 10.1007/s10915-013-9774-0.  Google Scholar

[3]

L. ChenJ. Zhao and X. Yang, Regularized linear schemes for the molecular beam epitaxy model with slope selection, Appl. Numer. Math., 128 (2018), 139-156.  doi: 10.1016/j.apnum.2018.02.004.  Google Scholar

[4]

K. Cheng, Z. Qiao and C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability, J. Sci. Comput., 81 (2019), 154–185. arXiv: 1903.03296. doi: 10.1007/s10915-019-01008-y.  Google Scholar

[5]

Q. ChengJ. Shen and X. Yang, Highly efficient and accurate numerical schemes for the epitaxial thin film growth models by using the SAV approach, J. Sci. Comput., 78 (2019), 1467-1487.  doi: 10.1007/s10915-018-0832-5.  Google Scholar

[6]

Z. CsahókC. Misbah and A. Valance, A class of nonlinear front evolution equations derived from geometry and conservation, Phys. D, 128 (1999), 87-100.  doi: 10.1016/S0167-2789(98)00320-0.  Google Scholar

[7]

L. Golubović, Interfacial coarsening in epitaxial growth models without slope selection, Phys. Rev. Lett., 78 (1997), 90. doi: 10.1103/PhysRevLett.78.90.  Google Scholar

[8]

M. GrasselliG. Mola and A. Yagi, On the longtime behavior of solutions to a model for epitaxial growth, Osaka J. Math., 48 (2011), 987-1004.   Google Scholar

[9]

M. Guedda and H. Trojette, Coarsening in an interfacial equation without slope selection revisited: Analytical results, Phys. Lett. A, 374 (2010), 4308-4311.  doi: 10.1016/j.physleta.2010.08.052.  Google Scholar

[10]

L. JuX. LiZ. Qiao and H. Zhang, Energy stability and error estimates of exponential time differencing schemes for the epitaxial growth model without slope selection, Math. Comp., 87 (2018), 1859-1885.  doi: 10.1090/mcom/3262.  Google Scholar

[11]

H. KhalfiN. E. Alaa and M. Guedda, Coarsening properties of a nonlinear front evolution equation, J. Adv. Math. Stud., 11 (2018), 295-305.   Google Scholar

[12]

H. KhalfiN. E. Alaa and M. Guedda, Period steady-state identification for a nonlinear front evolution equation using genetic algorithms, International Journal of Bio-Inspired Computation, 12 (2018), 196-202.  doi: 10.1504/IJBIC.2018.094647.  Google Scholar

[13]

H. KhalfiM. PierreN. E. Alaa and M. Guedda, Convergence to equilibrium of a DC algorithm for an epitaxial growth model., Int. J. Numer. Anal. Model., 16 (2019), 98-411.   Google Scholar

[14]

H. G. LeeJ. Shin and J.-Y. Lee, A second-order operator splitting fourier spectral method for models of epitaxial thin film growth, J. Sci. Comput., 71 (2017), 1303-1318.  doi: 10.1007/s10915-016-0340-4.  Google Scholar

[15]

W. LiW. ChenC. WangY. Yan and R. He, A second order energy stable linear scheme for a thin film model without slope selection, J. Sci. Comput., 76 (2018), 1905-1937.  doi: 10.1007/s10915-018-0693-y.  Google Scholar

[16]

B. Li and J.-G. Liu, Thin film epitaxy with or without slope selection, European J. Appl. Math., 14 (2003), 713-743.  doi: 10.1017/S095679250300528X.  Google Scholar

[17]

B. Li and J.-G. Liu, Epitaxial growth without slope selection: Energetics, coarsening, and dynamic scaling, J. Nonlinear Sci., 14 (2004), 429-451.  doi: 10.1007/s00332-004-0634-9.  Google Scholar

[18]

C. Misbah, O. Pierre-Louis and Y. Saito, Crystal surfaces in and out of equilibrium: A modern view, Reviews of Modern Physics, 82 (2010), 981. doi: 10.1103/RevModPhys.82.981.  Google Scholar

[19]

O. Pierre-Louis, C. Misbah, Y. Saito, J. Krug and P. Politi, New nonlinear evolution equation for steps during molecular beam epitaxy on vicinal surfaces, Physical Review Letters, 80 (1998), 4221. doi: 10.1103/PhysRevLett.80.4221.  Google Scholar

[20]

P. Politi and J. Villain, Ehrlich-Schwoebel instability in molecular-beam epitaxy: A minimal model, Physical Review B, 54 (1996), 5114. doi: 10.1103/PhysRevB.54.5114.  Google Scholar

[21]

P. Politi and C. Misbah, Nonlinear dynamics in one dimension: A criterion for coarsening and its temporal law, Phys. Rev. E, 73 (2006), 036133, 15 pp. doi: 10.1103/PhysRevE.73.036133.  Google Scholar

[22]

Z. QiaoZ.-Z. Sun and Z. Zhang, Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection, Math. Comp., 84 (2015), 653-674.  doi: 10.1090/S0025-5718-2014-02874-3.  Google Scholar

[23]

M. RostP. Šmilauer and J. Krug, Unstable epitaxy on vicinal surfaces, Surface Science, 369 (1996), 393-402.  doi: 10.1016/S0039-6028(96)00905-3.  Google Scholar

[24]

R. Schwoebel, Step motion on crystal surfaces. II, Journal of Applied Physics, 40 (1969), 614-618.  doi: 10.1063/1.1657442.  Google Scholar

Figure 1.  Thin film surface height in a co-moving frame ($ O{x_1}{x_2}z $)
Figure 2.  Evolution dynamics of the front equation (10) starting from the initial condition (40) where $ \varepsilon^2 = 0.25 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 1 $
Figure 3.  Evolution of the energy (6) in one dimension starting from the initial configuration (40) where $ \varepsilon = 0.25 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 1 $
Figure 4.  Evolution of the energy (6) in two dimensions starting from the initial configuration (41) where $ \varepsilon = 0.1 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 0.2 $
Figure 5.  Evolution of the energy (6) in two dimensions starting from the initial configuration (41) where $ \varepsilon = 0.01 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 0.2 $
Figure 6.  Evolution of the interfacial width or roughness $ W_u(t) $ starting from the initial configuration (41) where $ \varepsilon = 0.1 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 0.5 $
Figure 7.  Evolution of the $ L^2 $-error $ \| u^{n+1} - u^{n} \|_{L^2} $ (6) starting from the initial configuration (41) where $ \varepsilon = 0.01 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 0.2 $
Figure 8.  Evolution dynamics of the front equation (10) starting from the initial condition (41) where $ \varepsilon = 0.1 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 0.2 $
Figure 9.  Evolution dynamics of the front equation (10) starting from the initial condition (41) where $ \varepsilon = 0.01 $, $ \lambda = 10^{-2} $, $ M_k = 2^8 $ and $ \gamma = 0.2 $
[1]

Abdellatif Moudafi, Paul-Emile Mainge. Copositivity meets D. C. optimization. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021022

[2]

Yuan Gao, Hangjie Ji, Jian-Guo Liu, Thomas P. Witelski. A vicinal surface model for epitaxial growth with logarithmic free energy. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4433-4453. doi: 10.3934/dcdsb.2018170

[3]

Liping Zhang, Soon-Yi Wu, Shu-Cherng Fang. Convergence and error bound of a D-gap function based Newton-type algorithm for equilibrium problems. Journal of Industrial & Management Optimization, 2010, 6 (2) : 333-346. doi: 10.3934/jimo.2010.6.333

[4]

M. Montaz Ali. A recursive topographical differential evolution algorithm for potential energy minimization. Journal of Industrial & Management Optimization, 2010, 6 (1) : 29-46. doi: 10.3934/jimo.2010.6.29

[5]

Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure & Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095

[6]

Rejeb Hadiji, Ken Shirakawa. 3D-2D asymptotic observation for minimization problems associated with degenerate energy-coefficients. Conference Publications, 2011, 2011 (Special) : 624-633. doi: 10.3934/proc.2011.2011.624

[7]

Barbara Kaltenbacher, Jonas Offtermatt. A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems. Inverse Problems & Imaging, 2011, 5 (2) : 391-406. doi: 10.3934/ipi.2011.5.391

[8]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[9]

Ludwig Arnold. In memoriam Igor D. Chueshov September 23, 1951 - April 23, 2016. Discrete & Continuous Dynamical Systems - B, 2018, 23 (3) : i-ix. doi: 10.3934/dcdsb.201803i

[10]

Miguel Rodríguez-Olmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483-488. doi: 10.3934/jgm.2009.1.483

[11]

Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767

[12]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[13]

Eric A. Carlen, Süleyman Ulusoy. Localization, smoothness, and convergence to equilibrium for a thin film equation. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4537-4553. doi: 10.3934/dcds.2014.34.4537

[14]

Benoît Merlet, Morgan Pierre. Convergence to equilibrium for the backward Euler scheme and applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 685-702. doi: 10.3934/cpaa.2010.9.685

[15]

Anass Belcaid, Mohammed Douimi, Abdelkader Fassi Fihri. Recursive reconstruction of piecewise constant signals by minimization of an energy function. Inverse Problems & Imaging, 2018, 12 (4) : 903-920. doi: 10.3934/ipi.2018038

[16]

Riccardo Adami, Diego Noja, Nicola Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete & Continuous Dynamical Systems - B, 2013, 18 (5) : 1155-1188. doi: 10.3934/dcdsb.2013.18.1155

[17]

Haolei Wang, Lei Zhang. Energy minimization and preconditioning in the simulation of athermal granular materials in two dimensions. Electronic Research Archive, 2020, 28 (1) : 405-421. doi: 10.3934/era.2020023

[18]

Sanming Liu, Zhijie Wang, Chongyang Liu. Proximal iterative Gaussian smoothing algorithm for a class of nonsmooth convex minimization problems. Numerical Algebra, Control & Optimization, 2015, 5 (1) : 79-89. doi: 10.3934/naco.2015.5.79

[19]

Jie Sun, Honglei Xu, Min Zhang. A new interpretation of the progressive hedging algorithm for multistage stochastic minimization problems. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1655-1662. doi: 10.3934/jimo.2019022

[20]

Jie Huang, Xiaoping Yang, Yunmei Chen. A fast algorithm for global minimization of maximum likelihood based on ultrasound image segmentation. Inverse Problems & Imaging, 2011, 5 (3) : 645-657. doi: 10.3934/ipi.2011.5.645

2020 Impact Factor: 2.425

Article outline

Figures and Tables

[Back to Top]