-
Previous Article
Topological indices of discrete molecular structure
- DCDS-S Home
- This Issue
-
Next Article
Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian
Existence of nontrivial solutions to Chern-Simons-Schrödinger system with indefinite potential
School of Mathematics and Statistics, Southwest University, Chongqing 400715, China |
$ \begin{align*} \begin{cases} -\Delta u+V(x) u+A_{0}u+\sum\limits_{j = 1}^{2} A_{j}^{2}u = g(u), \\ \partial_{1}A_{0} = A_{2}|u|^{2}, \ \ \partial_{2}A_{0} = -A_{1}|u|^{2}, \\ \partial_{1}A_{2}-\partial_{2}A_{1} = -\frac{1}{2}u^{2}, \ \ \partial_{1}A_{1}+\partial_{2}A_{2} = 0, \end{cases} \end{align*} $ |
$ V $ |
$ f $ |
References:
[1] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[2] |
J. Byeon, H. Huh and J. Seok,
Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.
doi: 10.1016/j.jfa.2012.05.024. |
[3] |
J. Byeon, H. Huh and J. Seok,
On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.
doi: 10.1016/j.jde.2016.04.004. |
[4] |
D. M. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Comm. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[5] |
S. Chen, B. Zhang and X. Tang,
Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in $H^{1}(\mathbb{R}^{2})$, Nonlinear Anal., 185 (2019), 68-96.
doi: 10.1016/j.na.2019.02.028. |
[6] |
J. Deng, W. Long and J. F. Yang, Multi-peak solutions to Chern-Simons-Schrödinger systems with non-radial potential, arXiv: 2007.02499v1. Google Scholar |
[7] |
Y. Deng, S. Peng and W. Shuai,
Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, J. Differential Equations, 264 (2018), 4006-4035.
doi: 10.1016/j.jde.2017.12.003. |
[8] |
J. M. do Ó,
$N$-Laplacian equations in $\mathbb{R}^{N}$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419. |
[9] |
J. M. do Ó, E. Medeiros and U. Severo,
A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[10] |
T. Gou and Z. Zhang, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280 (2021), 108894. arXiv: 1903.07306.
doi: 10.1016/j.jfa.2020.108894. |
[11] |
H. Huh,
Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.
doi: 10.1088/0951-7715/22/5/003. |
[12] |
R. Jackiw and S.-Y. Pi,
Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.
doi: 10.1103/PhysRevD.42.3500. |
[13] |
R. Jackiw and S.-Y. Pi,
Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.
doi: 10.1103/PhysRevLett.64.2969. |
[14] |
J.-C. Kang, Y.-Y. Li and C.-L. Tang, Sign-changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-linear nonlinearity, Bull. Malays. Math. Sci. Soc., (2020).
doi: 10.1007/s40840-020-00974-z. |
[15] |
J. Kang and C. Tang,
Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth, Commun. Pure Appl. Anal., 19 (2020), 5239-5252.
doi: 10.3934/cpaa.2020235. |
[16] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-472.
|
[17] |
G.-D. Li, Y.-Y. Li and C.-L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ., (2020).
doi: 10.1080/17476933.2020.1723564. |
[18] |
G. Li and X. Luo,
Normalized solutions for the Chern-Simons-Schrödinger equation in $\mathbb{R}^{2}$, Ann. Acad. Sci. Fenn. Math., 42 (2017), 405-428.
doi: 10.5186/aasfm.2017.4223. |
[19] |
G. Li, X. Luo and W. Shuai,
Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.
doi: 10.1016/j.jmaa.2017.06.048. |
[20] |
S. J. Li and M. Willem,
Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32.
doi: 10.1006/jmaa.1995.1002. |
[21] |
W. Liang and C. Zhai, Existence of bound state solutions for the generalized Chern-Simons-Schrödinger system in $H^1(\mathbb{R}^2)$, Appl. Math. Lett., 100 (2020), 106028, 7 pp.
doi: 10.1016/j.aml.2019.106028. |
[22] |
S. Liu,
On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.
doi: 10.1007/s00526-011-0447-2. |
[23] |
B. Liu and P. Smith,
Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.
doi: 10.4171/RMI/898. |
[24] |
B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, (2014), 6341–6398.
doi: 10.1093/imrn/rnt161. |
[25] |
X. Luo,
Existence and stability of standing waves for a planar gauged nonlinear Schrödinger equation, Comput. Math. Appl., 76 (2018), 2701-2709.
doi: 10.1016/j.camwa.2018.09.003. |
[26] |
A. Pomponio and D. Ruiz,
Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.
doi: 10.1007/s00526-014-0749-2. |
[27] |
A. Pomponio and D. Ruiz,
A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.
doi: 10.4171/JEMS/535. |
[28] |
Y. Wan and J. Tan,
Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, J. Math. Anal. Appl., 415 (2014), 422-434.
doi: 10.1016/j.jmaa.2014.01.084. |
[29] |
Y. Wan and J. Tan, Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems, Nonlinear Differential Equations Appl., 24 (2017), 28, 24 pp.
doi: 10.1007/s00030-017-0448-8. |
[30] |
Y. Wan and J. Tan,
The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765-2786.
doi: 10.3934/dcds.2017119. |
[31] |
M. Willem, Minimax Theorems, vol. 24, Birkh$\ddot{\mbox a}$user Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[32] |
J. Zhang, W. Zhang and X. Xie,
Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88 (2019), 21-27.
doi: 10.1016/j.aml.2018.08.007. |
show all references
References:
[1] |
T. Bartsch and Z. Q. Wang,
Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Comm. Partial Differential Equations, 20 (1995), 1725-1741.
doi: 10.1080/03605309508821149. |
[2] |
J. Byeon, H. Huh and J. Seok,
Standing waves of nonlinear Schrödinger equations with the gauge field, J. Funct. Anal., 263 (2012), 1575-1608.
doi: 10.1016/j.jfa.2012.05.024. |
[3] |
J. Byeon, H. Huh and J. Seok,
On standing waves with a vortex point of order $N$ for the nonlinear Chern-Simons-Schrödinger equations, J. Differential Equations, 261 (2016), 1285-1316.
doi: 10.1016/j.jde.2016.04.004. |
[4] |
D. M. Cao,
Nontrivial solution of semilinear elliptic equation with critical exponent in $\mathbb{R}^{2}$, Comm. Partial Differential Equations, 17 (1992), 407-435.
doi: 10.1080/03605309208820848. |
[5] |
S. Chen, B. Zhang and X. Tang,
Existence and concentration of semiclassical ground state solutions for the generalized Chern-Simons-Schrödinger system in $H^{1}(\mathbb{R}^{2})$, Nonlinear Anal., 185 (2019), 68-96.
doi: 10.1016/j.na.2019.02.028. |
[6] |
J. Deng, W. Long and J. F. Yang, Multi-peak solutions to Chern-Simons-Schrödinger systems with non-radial potential, arXiv: 2007.02499v1. Google Scholar |
[7] |
Y. Deng, S. Peng and W. Shuai,
Nodal standing waves for a gauged nonlinear Schrödinger equation in $\mathbb{R}^{2}$, J. Differential Equations, 264 (2018), 4006-4035.
doi: 10.1016/j.jde.2017.12.003. |
[8] |
J. M. do Ó,
$N$-Laplacian equations in $\mathbb{R}^{N}$ with critical growth, Abstr. Appl. Anal., 2 (1997), 301-315.
doi: 10.1155/S1085337597000419. |
[9] |
J. M. do Ó, E. Medeiros and U. Severo,
A nonhomogeneous elliptic problem involving critical growth in dimension two, J. Math. Anal. Appl., 345 (2008), 286-304.
doi: 10.1016/j.jmaa.2008.03.074. |
[10] |
T. Gou and Z. Zhang, Normalized solutions to the Chern-Simons-Schrödinger system, J. Funct. Anal., 280 (2021), 108894. arXiv: 1903.07306.
doi: 10.1016/j.jfa.2020.108894. |
[11] |
H. Huh,
Blow-up solutions of the Chern-Simons-Schrödinger equations, Nonlinearity, 22 (2009), 967-974.
doi: 10.1088/0951-7715/22/5/003. |
[12] |
R. Jackiw and S.-Y. Pi,
Classical and quantal nonrelativistic Chern-Simons theory, Phys. Rev. D, 42 (1990), 3500-3513.
doi: 10.1103/PhysRevD.42.3500. |
[13] |
R. Jackiw and S.-Y. Pi,
Soliton solutions to the gauged nonlinear Schrödinger equation on the plane, Phys. Rev. Lett., 64 (1990), 2969-2972.
doi: 10.1103/PhysRevLett.64.2969. |
[14] |
J.-C. Kang, Y.-Y. Li and C.-L. Tang, Sign-changing solutions for Chern-Simons-Schrödinger equations with asymptotically 5-linear nonlinearity, Bull. Malays. Math. Sci. Soc., (2020).
doi: 10.1007/s40840-020-00974-z. |
[15] |
J. Kang and C. Tang,
Ground state radial sign-changing solutions for a gauged nonlinear Schrödinger equation involving critical growth, Commun. Pure Appl. Anal., 19 (2020), 5239-5252.
doi: 10.3934/cpaa.2020235. |
[16] |
W. Kryszewski and A. Szulkin,
Generalized linking theorem with an application to a semilinear Schrödinger equation, Adv. Differential Equations, 3 (1998), 441-472.
|
[17] |
G.-D. Li, Y.-Y. Li and C.-L. Tang, Existence and concentrate behavior of positive solutions for Chern-Simons-Schrödinger systems with critical growth, Complex Var. Elliptic Equ., (2020).
doi: 10.1080/17476933.2020.1723564. |
[18] |
G. Li and X. Luo,
Normalized solutions for the Chern-Simons-Schrödinger equation in $\mathbb{R}^{2}$, Ann. Acad. Sci. Fenn. Math., 42 (2017), 405-428.
doi: 10.5186/aasfm.2017.4223. |
[19] |
G. Li, X. Luo and W. Shuai,
Sign-changing solutions to a gauged nonlinear Schrödinger equation, J. Math. Anal. Appl., 455 (2017), 1559-1578.
doi: 10.1016/j.jmaa.2017.06.048. |
[20] |
S. J. Li and M. Willem,
Applications of local linking to critical point theory, J. Math. Anal. Appl., 189 (1995), 6-32.
doi: 10.1006/jmaa.1995.1002. |
[21] |
W. Liang and C. Zhai, Existence of bound state solutions for the generalized Chern-Simons-Schrödinger system in $H^1(\mathbb{R}^2)$, Appl. Math. Lett., 100 (2020), 106028, 7 pp.
doi: 10.1016/j.aml.2019.106028. |
[22] |
S. Liu,
On superlinear Schrödinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1-9.
doi: 10.1007/s00526-011-0447-2. |
[23] |
B. Liu and P. Smith,
Global wellposedness of the equivariant Chern-Simons-Schrödinger equation, Rev. Mat. Iberoam., 32 (2016), 751-794.
doi: 10.4171/RMI/898. |
[24] |
B. Liu, P. Smith and D. Tataru, Local wellposedness of Chern-Simons-Schrödinger, Int. Math. Res. Not. IMRN, (2014), 6341–6398.
doi: 10.1093/imrn/rnt161. |
[25] |
X. Luo,
Existence and stability of standing waves for a planar gauged nonlinear Schrödinger equation, Comput. Math. Appl., 76 (2018), 2701-2709.
doi: 10.1016/j.camwa.2018.09.003. |
[26] |
A. Pomponio and D. Ruiz,
Boundary concentration of a gauged nonlinear Schrödinger equation on large balls, Calc. Var. Partial Differential Equations, 53 (2015), 289-316.
doi: 10.1007/s00526-014-0749-2. |
[27] |
A. Pomponio and D. Ruiz,
A variational analysis of a gauged nonlinear Schrödinger equation, J. Eur. Math. Soc., 17 (2015), 1463-1486.
doi: 10.4171/JEMS/535. |
[28] |
Y. Wan and J. Tan,
Standing waves for the Chern-Simons-Schrödinger systems without (AR) condition, J. Math. Anal. Appl., 415 (2014), 422-434.
doi: 10.1016/j.jmaa.2014.01.084. |
[29] |
Y. Wan and J. Tan, Concentration of semi-classical solutions to the Chern-Simons-Schrödinger systems, Nonlinear Differential Equations Appl., 24 (2017), 28, 24 pp.
doi: 10.1007/s00030-017-0448-8. |
[30] |
Y. Wan and J. Tan,
The existence of nontrivial solutions to Chern-Simons-Schrödinger systems, Discrete Contin. Dyn. Syst., 37 (2017), 2765-2786.
doi: 10.3934/dcds.2017119. |
[31] |
M. Willem, Minimax Theorems, vol. 24, Birkh$\ddot{\mbox a}$user Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1. |
[32] |
J. Zhang, W. Zhang and X. Xie,
Infinitely many solutions for a gauged nonlinear Schrödinger equation, Appl. Math. Lett., 88 (2019), 21-27.
doi: 10.1016/j.aml.2018.08.007. |
[1] |
Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030 |
[2] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[3] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[4] |
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039 |
[5] |
Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011 |
[6] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[7] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[8] |
Tianyu Liao. The regularity lifting methods for nonnegative solutions of Lane-Emden system. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021036 |
[9] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[10] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[11] |
Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447 |
[12] |
Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021014 |
[13] |
Yingte Sun. Floquet solutions for the Schrödinger equation with fast-oscillating quasi-periodic potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021047 |
[14] |
Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021054 |
[15] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021115 |
[16] |
Norman Noguera, Ademir Pastor. Scattering of radial solutions for quadratic-type Schrödinger systems in dimension five. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3817-3836. doi: 10.3934/dcds.2021018 |
[17] |
Guanwei Chen, Martin Schechter. Multiple solutions for Schrödinger lattice systems with asymptotically linear terms and perturbed terms. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021124 |
[18] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[19] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[20] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
2019 Impact Factor: 1.233
Tools
Article outline
[Back to Top]