• Previous Article
    Analysis and new applications of fractal fractional differential equations with power law kernel
  • DCDS-S Home
  • This Issue
  • Next Article
    Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria
October  2021, 14(10): 3387-3399. doi: 10.3934/dcdss.2021017

Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator

1. 

Department of Mathematics, Malaviya National Institute of Technology, Jaipur-302017, INDIA

2. 

Department of HEAS(Mathematics), RTU, Kota-324010, INDIA

3. 

Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India

* Corresponding author: Devendra Kumar

Received  October 2019 Revised  December 2019 Published  October 2021 Early access  March 2021

The aim of this paper is to study the calcium profile governed by the advection diffusion equation. The mathematical and computational modeling has provided insights to understand the calcium signalling which depends upon cytosolic calcium concentration. Here the model includes the important physiological parameters like diffusion coefficient, flow velocity etc. The mathematical model is fractionalised using Hilfer derivative and appropriate boundary conditions have been framed. The use of fractional order derivative is more advantageous than the integer order because of the non-local property of the fractional order differentiation operator i.e. the next state of the system depends not only upon its current state but also upon all of its preceeding states. Analytic solution of the fractional advection diffusion equation arising in study of diffusion of cytosolic calcium in RBC is found using integral transform techniques. Since, the Hilfer derivative is generalisation of Riemann- Liouville and Caputo derivatives so, these two are also deduced as special cases. The numerical simulation has been done to observe the effects of the fractional order of the derivatives involved in the differential equation representing the model over the concentration of calcium which is function of time and distance. The concentration profile of calcium is significantly changed by the fractional order.

Citation: Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3387-3399. doi: 10.3934/dcdss.2021017
References:
[1]

R. AgarwalS. Jain and R. P. Agarwal, Mathematical modeling and analysis of dynamics cytosolic calcium in astrocytes using fractional calculus, Journal of Fractional Calculus and Application, 9 (2018), 1-12.   Google Scholar

[2]

R. Agarwal and S. D. Purohit, A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math Meth Appl Sci., 42 (2019), 7160-7171.  doi: 10.1002/mma.5822.  Google Scholar

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos, Soltons and Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[4]

K. S. Al-Ghafri and H. Rezazadeh, Solitons and other solutions of (3+ 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 289-304.   Google Scholar

[5]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar

[6]

I. AreaH. BatarfiJ. LosadaJ. NietoW. Shammakh and A. Torres, On a fractional order Ebola epidemic model, Advances in Difference Equations, 2015 (2015), 278-300.  doi: 10.1186/s13662-015-0613-5.  Google Scholar

[7]

A. Atangana and B. Alkahtani, Analysis of the Keller–Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453.  doi: 10.3390/e17064439.  Google Scholar

[8]

A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, The European Physical Journal Plus, 134 (2019), 429. doi: 10.1140/epjp/i2019-12777-8.  Google Scholar

[9]

D. Baleanu, Z. B. Güvenç and J. T. Machado, New trends in nanotechnology and fractional calculus applications, Springer, (2010). Google Scholar

[10]

D. BaleanuD. Kumar and S. D. Purohit, Generalized fractional integrals of product of two H-functions and a general class of polynomials, International Journal of Computer Mathematics, 93 (2016), 1320-1329.  doi: 10.1080/00207160.2015.1045886.  Google Scholar

[11]

W. D. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Applied Mathematics and Nonlinear Sciences, 3 (2018), 487-502.   Google Scholar

[12]

M. Caputo, Linear models of dissipation whos Q is almost frequency independent-II, Geophysical Journal International, 13 (1967), 529-539.   Google Scholar

[13]

M. Caputo, Elasticitò e Dissipazione, Zanichelli, Bologna, 1969. Google Scholar

[14]

G. Dupont and A. Goldbeter, Cam kinase II as frequency decoder of Ca2+ oscillations, Bioessays, 20 (1998), 607-610.  doi: 10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F.  Google Scholar

[15]

H. HauboldA. Mathai and R. Saxena, Solution of fractional reaction-diffusion equations in terms of H-function, J. Comput. Appl. Math., 235 (2011), 1311-1316.  doi: 10.1016/j.cam.2010.08.016.  Google Scholar

[16]

R. Hilfer, Fractional time evolution, Applications of Fractional Calculus in Physics, (2000), 87–130. doi: 10.1142/9789812817747_0002.  Google Scholar

[17]

M. A. ImranM. AleemM. B. RiazR. Ali and I. Khan., A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons & Fractals, 118 (2019), 274-289.  doi: 10.1016/j.chaos.2018.12.001.  Google Scholar

[18]

B. K. JhaN. Adlakha and M. Mehta, Finite element model to study calcium diffusion in astrocytes, Int. J. of Pure and Appl. Math, 78 (2012), 945-955.   Google Scholar

[19]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos, Solitons & Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, (2006).  Google Scholar

[21]

D. Kumar, J. Singh and D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys, 69 (2017), 103. Google Scholar

[22]

D. Kumar, J. Singh and D. Baleanu, Numerical computation of a fractional model of differential-difference equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061004, 6 pp. doi: 10.1115/1.4033899.  Google Scholar

[23]

D. Kumar, J. Singh and D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, The European Physical Journal Plus, 133 (2018), 70. Google Scholar

[24]

D. KumarJ. SinghK. Tanwar and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, International Journal of Heat and Mass Transfer, 138 (2019), 1222-1227.  doi: 10.1016/j.ijheatmasstransfer.2019.04.094.  Google Scholar

[25]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 43 (2020), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[26]

D. KumarJ. Singh and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[27]

D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259.  Google Scholar

[28]

D. KumarJ. Singh and D. Baleanu, A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.  doi: 10.2298/TSCI170129096K.  Google Scholar

[29]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley Interscience, 1993.  Google Scholar

[30]

G. Mittag-Lffler, Sur la nouvelle function E(x), CR Acad. Sci. Paris, 137 (1903), 554-558.   Google Scholar

[31]

M. B. Riaz and A. A. Zafar, Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Mathematical Modelling of Natural Phenomena, 13 (2018), 8-20.  doi: 10.1051/mmnp/2018005.  Google Scholar

[32]

J. Singh, D. Kumar and A. Kilçman, Numerical solution of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstract and Applied Analysis, 2014 (2014), 535793, 12 pp. doi: 10.1155/2014/535793.  Google Scholar

[33]

J. SinghA. KilicmanD. KumarR. Swroop and F. M. Ali, Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Thermal Science, 23 (2019), 2017-2025.  doi: 10.2298/TSCI190725366S.  Google Scholar

[34]

J. SinghD. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), 303-326.  doi: 10.1051/mmnp/2018068.  Google Scholar

[35]

J. SinghD. Kumar and D. Baleanu, On the analysis of fractional diabetes model with exponential law, Advances in Difference Equations, 2018 (2018), 231-246.  doi: 10.1186/s13662-018-1680-1.  Google Scholar

[36]

J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29 (2019), 013137, 7 pp. doi: 10.1063/1.5080691.  Google Scholar

[37]

I. N. Sneddon, Fourier Transforms, Inc., New York, 1951.  Google Scholar

[38]

Z. Tomovski, Generalised cauchy type problems for nonlinear fractional differential equation with composite fractional derivative operator, Nonlinear Anal-Theor., 75 (2012), 3364-3384.  doi: 10.1016/j.na.2011.12.034.  Google Scholar

[39]

T. F. Wiesner, B. C. Berk and R. M. Nerem, A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells, American Journal of Physiology, 270 (1996), C1556–C1569. doi: 10.1152/ajpcell.1996.270.5.C1556.  Google Scholar

[40]

A. Wiman, On the fundamental theorem in the theory of functions, 29 (1905), 191–201. Google Scholar

[41]

F. K. WinstonL. E. Thibault and E. J. Macarak, An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation, J. Biomech. Eng., 115 (1993), 160-168.  doi: 10.1115/1.2894116.  Google Scholar

[42]

M. P. Yadav and R. Agarwal, Numerical investigation of fractional-fractal boussinesq equation, Chaos, 29 (2019), 013109, 7 pp. doi: 10.1063/1.5080139.  Google Scholar

[43]

I. K. Youssef and M. H. Dewaik, Solving Poisson's Equations with fractional order using Haarwavelet, Applied Mathematics and Nonlinear Sciences, 2 (2017), 271-284.  doi: 10.21042/AMNS.2017.1.00023.  Google Scholar

[44]

A. Yokuş, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, International Journal of Modern Physics B, 32 (2018), 1850365, 12pp. doi: 10.1142/S0217979218503654.  Google Scholar

[45]

A. Yokuş and S. Gülbahar, Numerical solutions with linearization techniques of the fractional harry dym equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 35-41.   Google Scholar

[46]

Y. ZhangC. Cattani and X. Yang, Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753-6764.  doi: 10.3390/e17106753.  Google Scholar

show all references

References:
[1]

R. AgarwalS. Jain and R. P. Agarwal, Mathematical modeling and analysis of dynamics cytosolic calcium in astrocytes using fractional calculus, Journal of Fractional Calculus and Application, 9 (2018), 1-12.   Google Scholar

[2]

R. Agarwal and S. D. Purohit, A mathematical fractional model with non-singular kernel for thrombin receptor activation in calcium signalling, Math Meth Appl Sci., 42 (2019), 7160-7171.  doi: 10.1002/mma.5822.  Google Scholar

[3]

B. S. T. Alkahtani and A. Atangana, Analysis of non-homogenous heat model with new trend of derivative with fractional order, Chaos, Soltons and Fractals, 89 (2016), 566-571.  doi: 10.1016/j.chaos.2016.03.027.  Google Scholar

[4]

K. S. Al-Ghafri and H. Rezazadeh, Solitons and other solutions of (3+ 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 289-304.   Google Scholar

[5]

N. A. Asif, Z. Hammouch, M. B. Riaz and H. Bulut, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, The European Physical Journal Plus, 133 (2018), 272. doi: 10.1140/epjp/i2018-12098-6.  Google Scholar

[6]

I. AreaH. BatarfiJ. LosadaJ. NietoW. Shammakh and A. Torres, On a fractional order Ebola epidemic model, Advances in Difference Equations, 2015 (2015), 278-300.  doi: 10.1186/s13662-015-0613-5.  Google Scholar

[7]

A. Atangana and B. Alkahtani, Analysis of the Keller–Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439-4453.  doi: 10.3390/e17064439.  Google Scholar

[8]

A. Atangana and Z. Hammouch, Fractional calculus with power law: The cradle of our ancestors, The European Physical Journal Plus, 134 (2019), 429. doi: 10.1140/epjp/i2019-12777-8.  Google Scholar

[9]

D. Baleanu, Z. B. Güvenç and J. T. Machado, New trends in nanotechnology and fractional calculus applications, Springer, (2010). Google Scholar

[10]

D. BaleanuD. Kumar and S. D. Purohit, Generalized fractional integrals of product of two H-functions and a general class of polynomials, International Journal of Computer Mathematics, 93 (2016), 1320-1329.  doi: 10.1080/00207160.2015.1045886.  Google Scholar

[11]

W. D. Brzeziński, Review of numerical methods for NumILPT with computational accuracy assessment for fractional calculus, Applied Mathematics and Nonlinear Sciences, 3 (2018), 487-502.   Google Scholar

[12]

M. Caputo, Linear models of dissipation whos Q is almost frequency independent-II, Geophysical Journal International, 13 (1967), 529-539.   Google Scholar

[13]

M. Caputo, Elasticitò e Dissipazione, Zanichelli, Bologna, 1969. Google Scholar

[14]

G. Dupont and A. Goldbeter, Cam kinase II as frequency decoder of Ca2+ oscillations, Bioessays, 20 (1998), 607-610.  doi: 10.1002/(SICI)1521-1878(199808)20:8<607::AID-BIES2>3.0.CO;2-F.  Google Scholar

[15]

H. HauboldA. Mathai and R. Saxena, Solution of fractional reaction-diffusion equations in terms of H-function, J. Comput. Appl. Math., 235 (2011), 1311-1316.  doi: 10.1016/j.cam.2010.08.016.  Google Scholar

[16]

R. Hilfer, Fractional time evolution, Applications of Fractional Calculus in Physics, (2000), 87–130. doi: 10.1142/9789812817747_0002.  Google Scholar

[17]

M. A. ImranM. AleemM. B. RiazR. Ali and I. Khan., A comprehensive report on convective flow of fractional (ABC) and (CF) MHD viscous fluid subject to generalized boundary conditions, Chaos, Solitons & Fractals, 118 (2019), 274-289.  doi: 10.1016/j.chaos.2018.12.001.  Google Scholar

[18]

B. K. JhaN. Adlakha and M. Mehta, Finite element model to study calcium diffusion in astrocytes, Int. J. of Pure and Appl. Math, 78 (2012), 945-955.   Google Scholar

[19]

F. JaradT. Abdeljawad and Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative, Chaos, Solitons & Fractals, 117 (2018), 16-20.  doi: 10.1016/j.chaos.2018.10.006.  Google Scholar

[20]

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, (2006).  Google Scholar

[21]

D. Kumar, J. Singh and D. Baleanu, A fractional model of convective radial fins with temperature-dependent thermal conductivity, Rom. Rep. Phys, 69 (2017), 103. Google Scholar

[22]

D. Kumar, J. Singh and D. Baleanu, Numerical computation of a fractional model of differential-difference equation, Journal of Computational and Nonlinear Dynamics, 11 (2016), 061004, 6 pp. doi: 10.1115/1.4033899.  Google Scholar

[23]

D. Kumar, J. Singh and D. Baleanu, A new analysis of the Fornberg-Whitham equation pertaining to a fractional derivative with Mittag-Leffler-type kernel, The European Physical Journal Plus, 133 (2018), 70. Google Scholar

[24]

D. KumarJ. SinghK. Tanwar and D. Baleanu, A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler Laws, International Journal of Heat and Mass Transfer, 138 (2019), 1222-1227.  doi: 10.1016/j.ijheatmasstransfer.2019.04.094.  Google Scholar

[25]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Mathematical Methods in the Applied Sciences, 43 (2020), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[26]

D. KumarJ. Singh and D. Baleanu, Analysis of regularized long-wave equation associated with a new fractional operator with Mittag-Leffler type kernel, Physica A., 492 (2018), 155-167.  doi: 10.1016/j.physa.2017.10.002.  Google Scholar

[27]

D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259.  Google Scholar

[28]

D. KumarJ. Singh and D. Baleanu, A new fractional model for convective straight fins with temperature-dependent thermal conductivity, Thermal Science, 22 (2018), 2791-2802.  doi: 10.2298/TSCI170129096K.  Google Scholar

[29]

K. S. Miller and B. Ross, An Introduction to The Fractional Calculus and Fractional Differential Equations, Wiley Interscience, 1993.  Google Scholar

[30]

G. Mittag-Lffler, Sur la nouvelle function E(x), CR Acad. Sci. Paris, 137 (1903), 554-558.   Google Scholar

[31]

M. B. Riaz and A. A. Zafar, Exact solutions for the blood flow through a circular tube under the influence of a magnetic field using fractional Caputo-Fabrizio derivatives, Mathematical Modelling of Natural Phenomena, 13 (2018), 8-20.  doi: 10.1051/mmnp/2018005.  Google Scholar

[32]

J. Singh, D. Kumar and A. Kilçman, Numerical solution of nonlinear fractional partial differential equations arising in spatial diffusion of biological populations, Abstract and Applied Analysis, 2014 (2014), 535793, 12 pp. doi: 10.1155/2014/535793.  Google Scholar

[33]

J. SinghA. KilicmanD. KumarR. Swroop and F. M. Ali, Numerical study for fractional model of nonlinear predator-prey biological population dynamical system, Thermal Science, 23 (2019), 2017-2025.  doi: 10.2298/TSCI190725366S.  Google Scholar

[34]

J. SinghD. Kumar and D. Baleanu, New aspects of fractional Biswas-Milovic model with Mittag-Leffler law, Mathematical Modelling of Natural Phenomena, 14 (2019), 303-326.  doi: 10.1051/mmnp/2018068.  Google Scholar

[35]

J. SinghD. Kumar and D. Baleanu, On the analysis of fractional diabetes model with exponential law, Advances in Difference Equations, 2018 (2018), 231-246.  doi: 10.1186/s13662-018-1680-1.  Google Scholar

[36]

J. Singh, A new analysis for fractional rumor spreading dynamical model in a social network with Mittag-Leffler law, Chaos, 29 (2019), 013137, 7 pp. doi: 10.1063/1.5080691.  Google Scholar

[37]

I. N. Sneddon, Fourier Transforms, Inc., New York, 1951.  Google Scholar

[38]

Z. Tomovski, Generalised cauchy type problems for nonlinear fractional differential equation with composite fractional derivative operator, Nonlinear Anal-Theor., 75 (2012), 3364-3384.  doi: 10.1016/j.na.2011.12.034.  Google Scholar

[39]

T. F. Wiesner, B. C. Berk and R. M. Nerem, A mathematical model of cytosolic calcium dynamics in human umbilical vein endothelial cells, American Journal of Physiology, 270 (1996), C1556–C1569. doi: 10.1152/ajpcell.1996.270.5.C1556.  Google Scholar

[40]

A. Wiman, On the fundamental theorem in the theory of functions, 29 (1905), 191–201. Google Scholar

[41]

F. K. WinstonL. E. Thibault and E. J. Macarak, An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation, J. Biomech. Eng., 115 (1993), 160-168.  doi: 10.1115/1.2894116.  Google Scholar

[42]

M. P. Yadav and R. Agarwal, Numerical investigation of fractional-fractal boussinesq equation, Chaos, 29 (2019), 013109, 7 pp. doi: 10.1063/1.5080139.  Google Scholar

[43]

I. K. Youssef and M. H. Dewaik, Solving Poisson's Equations with fractional order using Haarwavelet, Applied Mathematics and Nonlinear Sciences, 2 (2017), 271-284.  doi: 10.21042/AMNS.2017.1.00023.  Google Scholar

[44]

A. Yokuş, Comparison of Caputo and conformable derivatives for time-fractional Korteweg–de Vries equation via the finite difference method, International Journal of Modern Physics B, 32 (2018), 1850365, 12pp. doi: 10.1142/S0217979218503654.  Google Scholar

[45]

A. Yokuş and S. Gülbahar, Numerical solutions with linearization techniques of the fractional harry dym equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 35-41.   Google Scholar

[46]

Y. ZhangC. Cattani and X. Yang, Local fractional homotopy perturbation method for solving non-homogeneous heat conduction equations in fractal domains, Entropy, 17 (2015), 6753-6764.  doi: 10.3390/e17106753.  Google Scholar

Figure 1.  Graph between $ C(x, t) $ and $ t $ for various values of $ \xi $ for $ \eta = 0 $ which corresponds to the Riemann- Liouville derivative
Figure 2.  Graph between $ C(x, t) $ and t for various values of $ \xi $ for $ \eta = 1 $ which corresponds to Caputo derivative
Figure 3.  Graph between $ C(x, t) $ and t for various values of $ \xi $ for $ \eta = 0.90 $
[1]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[2]

Amir Khan, Asaf Khan, Tahir Khan, Gul Zaman. Extension of triple Laplace transform for solving fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 755-768. doi: 10.3934/dcdss.2020042

[3]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3747-3761. doi: 10.3934/dcdss.2020435

[4]

Rahmat Ali Khan, Yongjin Li, Fahd Jarad. Exact analytical solutions of fractional order telegraph equations via triple Laplace transform. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2387-2397. doi: 10.3934/dcdss.2020427

[5]

Juan H. Arredondo, Francisco J. Mendoza, Alfredo Reyes. On the norm continuity of the hk-fourier transform. Electronic Research Announcements, 2018, 25: 36-47. doi: 10.3934/era.2018.25.005

[6]

Georgi Grahovski, Rossen Ivanov. Generalised Fourier transform and perturbations to soliton equations. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 579-595. doi: 10.3934/dcdsb.2009.12.579

[7]

Chihiro Matsuoka, Koichi Hiraide. Special functions created by Borel-Laplace transform of Hénon map. Electronic Research Announcements, 2011, 18: 1-11. doi: 10.3934/era.2011.18.1

[8]

William Guo. The Laplace transform as an alternative general method for solving linear ordinary differential equations. STEM Education, 2021, 1 (4) : 309-329. doi: 10.3934/steme.2021020

[9]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[10]

Michael Music. The nonlinear Fourier transform for two-dimensional subcritical potentials. Inverse Problems & Imaging, 2014, 8 (4) : 1151-1167. doi: 10.3934/ipi.2014.8.1151

[11]

Jan-Cornelius Molnar. On two-sided estimates for the nonlinear Fourier transform of KdV. Discrete & Continuous Dynamical Systems, 2016, 36 (6) : 3339-3356. doi: 10.3934/dcds.2016.36.3339

[12]

Matti Viikinkoski, Mikko Kaasalainen. Shape reconstruction from images: Pixel fields and Fourier transform. Inverse Problems & Imaging, 2014, 8 (3) : 885-900. doi: 10.3934/ipi.2014.8.885

[13]

Barbara Brandolini, Francesco Chiacchio, Jeffrey J. Langford. Estimates for sums of eigenvalues of the free plate via the fourier transform. Communications on Pure & Applied Analysis, 2020, 19 (1) : 113-122. doi: 10.3934/cpaa.2020007

[14]

Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021011

[15]

Qing Tang. On an optimal control problem of time-fractional advection-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 761-779. doi: 10.3934/dcdsb.2019266

[16]

Thomas Chen, Ryan Denlinger, Nataša Pavlović. Moments and regularity for a Boltzmann equation via Wigner transform. Discrete & Continuous Dynamical Systems, 2019, 39 (9) : 4979-5015. doi: 10.3934/dcds.2019204

[17]

Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 723-739. doi: 10.3934/dcdss.2020040

[18]

Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169

[19]

Nam Yul Yu. A Fourier transform approach for improving the Levenshtein's lower bound on aperiodic correlation of binary sequences. Advances in Mathematics of Communications, 2014, 8 (2) : 209-222. doi: 10.3934/amc.2014.8.209

[20]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (185)
  • HTML views (401)
  • Cited by (0)

[Back to Top]