
-
Previous Article
Interpolation of exponential-type functions on a uniform grid by shifts of a basis function
- DCDS-S Home
- This Issue
-
Next Article
On the observability of conformable linear time-invariant control systems
Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator
1. | Department of Physics, Jagan Nath University, Jaipur-303901, Rajasthan, India |
2. | Department of Physics, Vivekananda Global University, Jaipur-303012, Rajasthan, India |
3. | Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India |
4. | Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India |
In this paper, an effective analytical scheme based on Sumudu transform known as homotopy perturbation Sumudu transform method (HPSTM) is employed to find numerical solutions of time fractional Schrödinger equations with harmonic oscillator.These nonlinear time fractional Schrödinger equations describe the various phenomena in physics such as motion of quantum oscillator, lattice vibration, propagation of electromagnetic waves, fluid flow, etc. The main objective of this study is to show the effectiveness of HPSTM, which do not require small parameters and avoid linearization and physically unrealistic assumptions. The results reveal that proposed scheme is a powerful tool for study large class of problems. This study shows that the results obtained by the HPSTM are accurate and effective for analysis the nonlinear behaviour of complex systems and efficient over other available analytical schemes.
References:
[1] |
A. K. Alomari, M. S. Noorani and R. Nazar,
Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Commun. Nonlin. Sci. Numer. Simul., 14 (2009), 1196-1207.
doi: 10.1016/j.cnsns.2008.01.008. |
[2] |
Z. Alijani, D. Baleanu, B. Shiri and G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos Soliton Fract., 131 (2020), 109510, 12 pp.
doi: 10.1016/j. chaos.2019.109510. |
[3] |
G. Amador, K. Colon, N. Luna, G. Mercado, E. Pereira and E. Suazo,
On solutions for linear and nonlinear Schrödinger equations with variable coefficients: A computational approach, Symmetry, 8 (2016), 38-54.
doi: 10.3390/sym8060038. |
[4] |
J. Biazar and H. Ghazvini,
Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method, Phys. Lett. A, 366 (2007), 79-84.
doi: 10.1016/j.physleta.2007.01.060. |
[5] |
A. Borhanifar and R. Abazari,
Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Optics Commun., 283 (2010), 2026-2031.
doi: 10.1016/j.optcom.2010.01.046. |
[6] |
E. Babolian, J. Saeidian and M. Paripour,
Application of the homotopy analysis method for solving equal-width wave and modified equal-width wave equations, Z. Naturforsch, 64a (2009), 685-690.
doi: 10.1515/zna-2009-1103. |
[7] |
F. B. M. Belgacem, A. A. Karaballi and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Prob. Eng., (2003), 103-118.
doi: 10.1155/S1024123X03207018. |
[8] |
D. Baleanu, J. H. Asad and A. Jajarmi,
New aspects of the motion of a particle in a circular cavity, Proceedings of the Romanian Academy, Series A, 19 (2018), 361-367.
|
[9] |
D. Baleanu, S. S. Sajjadi, A. Jajarmi and J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Europ. Phys. J. Plus, 134 (2019), 181.
doi: 10.1140/epjp/i2019-12561-x. |
[10] |
D. Baleanu, J. H. Asad and A. Jajarmi,
The fractional model of spring pendulum: new features within different kernels, P. Romanian Acad. A, 19 (2018), 447-454.
|
[11] |
D. Baleanu and B. Shiri,
Collocation methods for fractional differential equations involving non-singular kernel, Chaos Soliton Fract., 116 (2018), 136-145.
doi: 10.1016/j.chaos.2018.09.020. |
[12] |
J. Biazar, R. Ansari, K. Hosseini and P. Gholamin,
Solution of the linear and non-linear Schrödinger equations using homotopy perturbation and Adomian decomposition methods, Int. Math. Forum, 3 (2008), 1891-1897.
|
[13] |
J. Cresser, Quantum Physics Notes, Department of Physics, Macquarie University, Australia, (2011). Google Scholar |
[14] |
D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, 2018.
doi: 10.1017/9781316995433.![]() |
[15] |
A. Goswami, J. Singh, D. Kumar and S. Gupta,
An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85-99.
doi: 10.1016/j.joes.2019.01.003. |
[16] |
A. Goswami, J. Singh, D. Kumar and S. Rathore,
An analytical approach to the fractional Equal Width equations describing hydro-magnetic waves in cold plasma, Physica A, 524 (2019), 563-575.
doi: 10.1016/j.physa.2019.04.058. |
[17] |
A. Goswami, Su shila, J. Singh and D. Kumar,
Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occurring in multi-component plasmas, AIMS Math., 5 (2020), 2346-2368.
doi: 10.3934/math.2020155. |
[18] |
A. Goswami, J. Singh and D. Kumar,
A reliable algorithm for KdV equations arising in warm plasma, Nonlin. Eng., 5 (2016), 7-16.
doi: 10.1515/nleng-2015-0024. |
[19] |
A. Goswami, J. Singh and D. Kumar,
Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9 (2018), 2265-2273.
doi: 10.1016/j.asej.2017.03.004. |
[20] |
A. Ghorbani and J. Saberi-Nadjafi, He's homotopy perturbation method for calculating adomian polynomials, Int. J. Nonlin. Sci. Num. Simul., 8 (2007), 229-232. Google Scholar |
[21] |
A. Ghorbani,
Beyond Adomian polynomials: He polynomials, Chaos Soliton Fract., 39 (2009), 1486-1492.
doi: 10.1016/j.chaos.2007.06.034. |
[22] |
J. H. He,
Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.
doi: 10.1016/S0096-3003(01)00312-5. |
[23] |
K. Hosseini, A. Zabihi, F. Samadani and R. Ansari, New explicit exact solutions of the unstable nonlinear Schrödinger equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018). Google Scholar |
[24] |
K. Hosseini, F. Samadani, D. Kumar and M. Faridi,
New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105.
doi: 10.1016/j.ijleo.2017.11.124. |
[25] |
K. Hosseini, D. Kumar, M. Kaplan and E. Y. Bejarbaneh,
New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761-767.
doi: 10.1088/0253-6102/68/6/761. |
[26] |
E. K. Jaradat, O. Alomari, M. Abudayah and A. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 6765021, 11 pp.
doi: 10.1155/2018/6765021. |
[27] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front. Phys., 26 (2019), 196.
doi: 10.3389/fphy.2019.00196. |
[28] |
Y. Khan and Q. Wu,
Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math Appl., 61 (2011), 1963-1967.
doi: 10.1016/j.camwa.2010.08.022. |
[29] |
M. Kaplan, K. Hosseini, F. Samadani and N. Raza, Optical soliton solutions of the cubic-quintic non-linear Schrödinger equation including an anti-cubic term, J. Moder. Opt., 65 (2018), 1431-1436. Google Scholar |
[30] |
R. I. Nuruddeen,
Elzaki decomposition method and its applications in solving linear and nonlinear Schrödinger equations, Sohag J. Math., 4 (2017), 31-35.
doi: 10.18576/sjm/040201. |
[31] |
A. Niknam, A. A. Rajabi and M. Solaimani,
Solutions of D-dimensional Schrödinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method, J. Theor. Appl. Phys., 10 (2016), 53-59.
doi: 10.1007/s40094-015-0201-9. |
[32] |
A. Sadighi and D. D. Ganji,
Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy perturbation and Adomian decomposition methods, Phys. Lett. A, 372 (2008), 465-469.
doi: 10.1016/j.physleta.2007.07.065. |
[33] |
B. Shiri and D. Baleanu,
System of fractional differential algebraic equations with applications, Chaos Soliton Fractal, 120 (2019), 203-212.
doi: 10.1016/j.chaos.2019.01.028. |
[34] |
J. Singh, D. Kumar and Su shila, Homotopy perturbation Sumudu transform method for nonlinear equations, Adv. Appl. Math. Mech., 4 (2011), 165-175. Google Scholar |
[35] |
J. Singh, D. Kumar and A. Kilicman, Homotopy perturbation method for fractional gas dynamics equation using sumudu transform, Abst. Appl. Anal., 2013 (2013), 934060, 8 pp.
doi: 10.1155/2013/934060. |
[36] |
A. Shidfar, A. Molabahrami, A. Babaei and A. Yazdanian,
A study on the d-dimensional Schrödinger equation with a power-law nonlinearity, Chaos Soliton Fract., 42 (2009), 2154-2158.
doi: 10.1016/j.chaos.2009.03.139. |
[37] |
A. Shidfar, A. Molabahrami, A. Babaei and A. Yazdanian,
A series solution of the Cauchy problem for the generalized d-dimensional Schrödinger equation with a power-law nonlinearity, Comput. Math. Appl., 59 (2010), 1500-1508.
doi: 10.1016/j.camwa.2009.11.017. |
[38] |
A. M. Wazwaz,
A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Soliton Fract., 37 (2008), 1136-1142.
doi: 10.1016/j.chaos.2006.10.009. |
[39] |
G. K. Watugala,
Sumudu transform- a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35-43.
doi: 10.1080/0020739930240105. |
[40] |
L. Zheng, T. Wang, X. Zhang and L. Ma,
The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances, Appl. Math. Lett., 26 (2013), 463-468.
doi: 10.1016/j.aml.2012.11.009. |
show all references
References:
[1] |
A. K. Alomari, M. S. Noorani and R. Nazar,
Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Commun. Nonlin. Sci. Numer. Simul., 14 (2009), 1196-1207.
doi: 10.1016/j.cnsns.2008.01.008. |
[2] |
Z. Alijani, D. Baleanu, B. Shiri and G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos Soliton Fract., 131 (2020), 109510, 12 pp.
doi: 10.1016/j. chaos.2019.109510. |
[3] |
G. Amador, K. Colon, N. Luna, G. Mercado, E. Pereira and E. Suazo,
On solutions for linear and nonlinear Schrödinger equations with variable coefficients: A computational approach, Symmetry, 8 (2016), 38-54.
doi: 10.3390/sym8060038. |
[4] |
J. Biazar and H. Ghazvini,
Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method, Phys. Lett. A, 366 (2007), 79-84.
doi: 10.1016/j.physleta.2007.01.060. |
[5] |
A. Borhanifar and R. Abazari,
Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Optics Commun., 283 (2010), 2026-2031.
doi: 10.1016/j.optcom.2010.01.046. |
[6] |
E. Babolian, J. Saeidian and M. Paripour,
Application of the homotopy analysis method for solving equal-width wave and modified equal-width wave equations, Z. Naturforsch, 64a (2009), 685-690.
doi: 10.1515/zna-2009-1103. |
[7] |
F. B. M. Belgacem, A. A. Karaballi and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Prob. Eng., (2003), 103-118.
doi: 10.1155/S1024123X03207018. |
[8] |
D. Baleanu, J. H. Asad and A. Jajarmi,
New aspects of the motion of a particle in a circular cavity, Proceedings of the Romanian Academy, Series A, 19 (2018), 361-367.
|
[9] |
D. Baleanu, S. S. Sajjadi, A. Jajarmi and J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Europ. Phys. J. Plus, 134 (2019), 181.
doi: 10.1140/epjp/i2019-12561-x. |
[10] |
D. Baleanu, J. H. Asad and A. Jajarmi,
The fractional model of spring pendulum: new features within different kernels, P. Romanian Acad. A, 19 (2018), 447-454.
|
[11] |
D. Baleanu and B. Shiri,
Collocation methods for fractional differential equations involving non-singular kernel, Chaos Soliton Fract., 116 (2018), 136-145.
doi: 10.1016/j.chaos.2018.09.020. |
[12] |
J. Biazar, R. Ansari, K. Hosseini and P. Gholamin,
Solution of the linear and non-linear Schrödinger equations using homotopy perturbation and Adomian decomposition methods, Int. Math. Forum, 3 (2008), 1891-1897.
|
[13] |
J. Cresser, Quantum Physics Notes, Department of Physics, Macquarie University, Australia, (2011). Google Scholar |
[14] |
D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, 2018.
doi: 10.1017/9781316995433.![]() |
[15] |
A. Goswami, J. Singh, D. Kumar and S. Gupta,
An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85-99.
doi: 10.1016/j.joes.2019.01.003. |
[16] |
A. Goswami, J. Singh, D. Kumar and S. Rathore,
An analytical approach to the fractional Equal Width equations describing hydro-magnetic waves in cold plasma, Physica A, 524 (2019), 563-575.
doi: 10.1016/j.physa.2019.04.058. |
[17] |
A. Goswami, Su shila, J. Singh and D. Kumar,
Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occurring in multi-component plasmas, AIMS Math., 5 (2020), 2346-2368.
doi: 10.3934/math.2020155. |
[18] |
A. Goswami, J. Singh and D. Kumar,
A reliable algorithm for KdV equations arising in warm plasma, Nonlin. Eng., 5 (2016), 7-16.
doi: 10.1515/nleng-2015-0024. |
[19] |
A. Goswami, J. Singh and D. Kumar,
Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9 (2018), 2265-2273.
doi: 10.1016/j.asej.2017.03.004. |
[20] |
A. Ghorbani and J. Saberi-Nadjafi, He's homotopy perturbation method for calculating adomian polynomials, Int. J. Nonlin. Sci. Num. Simul., 8 (2007), 229-232. Google Scholar |
[21] |
A. Ghorbani,
Beyond Adomian polynomials: He polynomials, Chaos Soliton Fract., 39 (2009), 1486-1492.
doi: 10.1016/j.chaos.2007.06.034. |
[22] |
J. H. He,
Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.
doi: 10.1016/S0096-3003(01)00312-5. |
[23] |
K. Hosseini, A. Zabihi, F. Samadani and R. Ansari, New explicit exact solutions of the unstable nonlinear Schrödinger equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018). Google Scholar |
[24] |
K. Hosseini, F. Samadani, D. Kumar and M. Faridi,
New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105.
doi: 10.1016/j.ijleo.2017.11.124. |
[25] |
K. Hosseini, D. Kumar, M. Kaplan and E. Y. Bejarbaneh,
New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761-767.
doi: 10.1088/0253-6102/68/6/761. |
[26] |
E. K. Jaradat, O. Alomari, M. Abudayah and A. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 6765021, 11 pp.
doi: 10.1155/2018/6765021. |
[27] |
A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front. Phys., 26 (2019), 196.
doi: 10.3389/fphy.2019.00196. |
[28] |
Y. Khan and Q. Wu,
Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math Appl., 61 (2011), 1963-1967.
doi: 10.1016/j.camwa.2010.08.022. |
[29] |
M. Kaplan, K. Hosseini, F. Samadani and N. Raza, Optical soliton solutions of the cubic-quintic non-linear Schrödinger equation including an anti-cubic term, J. Moder. Opt., 65 (2018), 1431-1436. Google Scholar |
[30] |
R. I. Nuruddeen,
Elzaki decomposition method and its applications in solving linear and nonlinear Schrödinger equations, Sohag J. Math., 4 (2017), 31-35.
doi: 10.18576/sjm/040201. |
[31] |
A. Niknam, A. A. Rajabi and M. Solaimani,
Solutions of D-dimensional Schrödinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method, J. Theor. Appl. Phys., 10 (2016), 53-59.
doi: 10.1007/s40094-015-0201-9. |
[32] |
A. Sadighi and D. D. Ganji,
Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy perturbation and Adomian decomposition methods, Phys. Lett. A, 372 (2008), 465-469.
doi: 10.1016/j.physleta.2007.07.065. |
[33] |
B. Shiri and D. Baleanu,
System of fractional differential algebraic equations with applications, Chaos Soliton Fractal, 120 (2019), 203-212.
doi: 10.1016/j.chaos.2019.01.028. |
[34] |
J. Singh, D. Kumar and Su shila, Homotopy perturbation Sumudu transform method for nonlinear equations, Adv. Appl. Math. Mech., 4 (2011), 165-175. Google Scholar |
[35] |
J. Singh, D. Kumar and A. Kilicman, Homotopy perturbation method for fractional gas dynamics equation using sumudu transform, Abst. Appl. Anal., 2013 (2013), 934060, 8 pp.
doi: 10.1155/2013/934060. |
[36] |
A. Shidfar, A. Molabahrami, A. Babaei and A. Yazdanian,
A study on the d-dimensional Schrödinger equation with a power-law nonlinearity, Chaos Soliton Fract., 42 (2009), 2154-2158.
doi: 10.1016/j.chaos.2009.03.139. |
[37] |
A. Shidfar, A. Molabahrami, A. Babaei and A. Yazdanian,
A series solution of the Cauchy problem for the generalized d-dimensional Schrödinger equation with a power-law nonlinearity, Comput. Math. Appl., 59 (2010), 1500-1508.
doi: 10.1016/j.camwa.2009.11.017. |
[38] |
A. M. Wazwaz,
A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Soliton Fract., 37 (2008), 1136-1142.
doi: 10.1016/j.chaos.2006.10.009. |
[39] |
G. K. Watugala,
Sumudu transform- a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35-43.
doi: 10.1080/0020739930240105. |
[40] |
L. Zheng, T. Wang, X. Zhang and L. Ma,
The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances, Appl. Math. Lett., 26 (2013), 463-468.
doi: 10.1016/j.aml.2012.11.009. |












[1] |
Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021 |
[2] |
Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021013 |
[3] |
José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376 |
[4] |
Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024 |
[5] |
Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021038 |
[6] |
Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298 |
[7] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[8] |
Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450 |
[9] |
Wenmeng Geng, Kai Tao. Lyapunov exponents of discrete quasi-periodic gevrey Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2977-2996. doi: 10.3934/dcdsb.2020216 |
[10] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[11] |
Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021115 |
[12] |
Jose Anderson Cardoso, Patricio Cerda, Denilson Pereira, Pedro Ubilla. Schrödinger equations with vanishing potentials involving Brezis-Kamin type problems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2947-2969. doi: 10.3934/dcds.2020392 |
[13] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[14] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
[15] |
Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267 |
[16] |
Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309 |
[17] |
Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028 |
[18] |
Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039 |
[19] |
Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021031 |
[20] |
Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019 |
2019 Impact Factor: 1.233
Tools
Metrics
Other articles
by authors
[Back to Top]