• Previous Article
    Solving a class of biological HIV infection model of latently infected cells using heuristic approach
  • DCDS-S Home
  • This Issue
  • Next Article
    An efficient numerical method for fractional model of allelopathic stimulatory phytoplankton species with Mittag-Leffler law
October  2021, 14(10): 3589-3610. doi: 10.3934/dcdss.2021021

Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator

1. 

Department of Physics, Jagan Nath University, Jaipur-303901, Rajasthan, India

2. 

Department of Physics, Vivekananda Global University, Jaipur-303012, Rajasthan, India

3. 

Department of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India

4. 

Department of Mathematics, University of Rajasthan, Jaipur 302004, Rajasthan, India

* Corresponding author: Sushila

Received  January 2020 Revised  April 2020 Published  October 2021 Early access  March 2021

In this paper, an effective analytical scheme based on Sumudu transform known as homotopy perturbation Sumudu transform method (HPSTM) is employed to find numerical solutions of time fractional Schrödinger equations with harmonic oscillator.These nonlinear time fractional Schrödinger equations describe the various phenomena in physics such as motion of quantum oscillator, lattice vibration, propagation of electromagnetic waves, fluid flow, etc. The main objective of this study is to show the effectiveness of HPSTM, which do not require small parameters and avoid linearization and physically unrealistic assumptions. The results reveal that proposed scheme is a powerful tool for study large class of problems. This study shows that the results obtained by the HPSTM are accurate and effective for analysis the nonlinear behaviour of complex systems and efficient over other available analytical schemes.

Citation: Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021
References:
[1]

A. K. AlomariM. S. Noorani and R. Nazar, Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Commun. Nonlin. Sci. Numer. Simul., 14 (2009), 1196-1207.  doi: 10.1016/j.cnsns.2008.01.008.

[2]

Z. Alijani, D. Baleanu, B. Shiri and G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos Soliton Fract., 131 (2020), 109510, 12 pp. doi: 10.1016/j. chaos.2019.109510.

[3]

G. AmadorK. ColonN. LunaG. MercadoE. Pereira and E. Suazo, On solutions for linear and nonlinear Schrödinger equations with variable coefficients: A computational approach, Symmetry, 8 (2016), 38-54.  doi: 10.3390/sym8060038.

[4]

J. Biazar and H. Ghazvini, Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method, Phys. Lett. A, 366 (2007), 79-84.  doi: 10.1016/j.physleta.2007.01.060.

[5]

A. Borhanifar and R. Abazari, Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Optics Commun., 283 (2010), 2026-2031.  doi: 10.1016/j.optcom.2010.01.046.

[6]

E. BabolianJ. Saeidian and M. Paripour, Application of the homotopy analysis method for solving equal-width wave and modified equal-width wave equations, Z. Naturforsch, 64a (2009), 685-690.  doi: 10.1515/zna-2009-1103.

[7]

F. B. M. Belgacem, A. A. Karaballi and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Prob. Eng., (2003), 103-118. doi: 10.1155/S1024123X03207018.

[8]

D. BaleanuJ. H. Asad and A. Jajarmi, New aspects of the motion of a particle in a circular cavity, Proceedings of the Romanian Academy, Series A, 19 (2018), 361-367. 

[9]

D. Baleanu, S. S. Sajjadi, A. Jajarmi and J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Europ. Phys. J. Plus, 134 (2019), 181. doi: 10.1140/epjp/i2019-12561-x.

[10]

D. BaleanuJ. H. Asad and A. Jajarmi, The fractional model of spring pendulum: new features within different kernels, P. Romanian Acad. A, 19 (2018), 447-454. 

[11]

D. Baleanu and B. Shiri, Collocation methods for fractional differential equations involving non-singular kernel, Chaos Soliton Fract., 116 (2018), 136-145.  doi: 10.1016/j.chaos.2018.09.020.

[12]

J. BiazarR. AnsariK. Hosseini and P. Gholamin, Solution of the linear and non-linear Schrödinger equations using homotopy perturbation and Adomian decomposition methods, Int. Math. Forum, 3 (2008), 1891-1897. 

[13]

J. Cresser, Quantum Physics Notes, Department of Physics, Macquarie University, Australia, (2011).

[14] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, 2018.  doi: 10.1017/9781316995433.
[15]

A. GoswamiJ. SinghD. Kumar and S. Gupta, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85-99.  doi: 10.1016/j.joes.2019.01.003.

[16]

A. GoswamiJ. SinghD. Kumar and S. Rathore, An analytical approach to the fractional Equal Width equations describing hydro-magnetic waves in cold plasma, Physica A, 524 (2019), 563-575.  doi: 10.1016/j.physa.2019.04.058.

[17]

A. GoswamiSu shilaJ. Singh and D. Kumar, Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occurring in multi-component plasmas, AIMS Math., 5 (2020), 2346-2368.  doi: 10.3934/math.2020155.

[18]

A. GoswamiJ. Singh and D. Kumar, A reliable algorithm for KdV equations arising in warm plasma, Nonlin. Eng., 5 (2016), 7-16.  doi: 10.1515/nleng-2015-0024.

[19]

A. GoswamiJ. Singh and D. Kumar, Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9 (2018), 2265-2273.  doi: 10.1016/j.asej.2017.03.004.

[20]

A. Ghorbani and J. Saberi-Nadjafi, He's homotopy perturbation method for calculating adomian polynomials, Int. J. Nonlin. Sci. Num. Simul., 8 (2007), 229-232. 

[21]

A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Soliton Fract., 39 (2009), 1486-1492.  doi: 10.1016/j.chaos.2007.06.034.

[22]

J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.  doi: 10.1016/S0096-3003(01)00312-5.

[23]

K. Hosseini, A. Zabihi, F. Samadani and R. Ansari, New explicit exact solutions of the unstable nonlinear Schrödinger equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018).

[24]

K. HosseiniF. SamadaniD. Kumar and M. Faridi, New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105.  doi: 10.1016/j.ijleo.2017.11.124.

[25]

K. HosseiniD. KumarM. Kaplan and E. Y. Bejarbaneh, New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761-767.  doi: 10.1088/0253-6102/68/6/761.

[26]

E. K. Jaradat, O. Alomari, M. Abudayah and A. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 6765021, 11 pp. doi: 10.1155/2018/6765021.

[27]

A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front. Phys., 26 (2019), 196. doi: 10.3389/fphy.2019.00196.

[28]

Y. Khan and Q. Wu, Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math Appl., 61 (2011), 1963-1967.  doi: 10.1016/j.camwa.2010.08.022.

[29]

M. KaplanK. HosseiniF. Samadani and N. Raza, Optical soliton solutions of the cubic-quintic non-linear Schrödinger equation including an anti-cubic term, J. Moder. Opt., 65 (2018), 1431-1436. 

[30]

R. I. Nuruddeen, Elzaki decomposition method and its applications in solving linear and nonlinear Schrödinger equations, Sohag J. Math., 4 (2017), 31-35.  doi: 10.18576/sjm/040201.

[31]

A. NiknamA. A. Rajabi and M. Solaimani, Solutions of D-dimensional Schrödinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method, J. Theor. Appl. Phys., 10 (2016), 53-59.  doi: 10.1007/s40094-015-0201-9.

[32]

A. Sadighi and D. D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy perturbation and Adomian decomposition methods, Phys. Lett. A, 372 (2008), 465-469.  doi: 10.1016/j.physleta.2007.07.065.

[33]

B. Shiri and D. Baleanu, System of fractional differential algebraic equations with applications, Chaos Soliton Fractal, 120 (2019), 203-212.  doi: 10.1016/j.chaos.2019.01.028.

[34]

J. SinghD. Kumar and Su shila, Homotopy perturbation Sumudu transform method for nonlinear equations, Adv. Appl. Math. Mech., 4 (2011), 165-175. 

[35]

J. Singh, D. Kumar and A. Kilicman, Homotopy perturbation method for fractional gas dynamics equation using sumudu transform, Abst. Appl. Anal., 2013 (2013), 934060, 8 pp. doi: 10.1155/2013/934060.

[36]

A. ShidfarA. MolabahramiA. Babaei and A. Yazdanian, A study on the d-dimensional Schrödinger equation with a power-law nonlinearity, Chaos Soliton Fract., 42 (2009), 2154-2158.  doi: 10.1016/j.chaos.2009.03.139.

[37]

A. ShidfarA. MolabahramiA. Babaei and A. Yazdanian, A series solution of the Cauchy problem for the generalized d-dimensional Schrödinger equation with a power-law nonlinearity, Comput. Math. Appl., 59 (2010), 1500-1508.  doi: 10.1016/j.camwa.2009.11.017.

[38]

A. M. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Soliton Fract., 37 (2008), 1136-1142.  doi: 10.1016/j.chaos.2006.10.009.

[39]

G. K. Watugala, Sumudu transform- a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35-43.  doi: 10.1080/0020739930240105.

[40]

L. ZhengT. WangX. Zhang and L. Ma, The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances, Appl. Math. Lett., 26 (2013), 463-468.  doi: 10.1016/j.aml.2012.11.009.

show all references

References:
[1]

A. K. AlomariM. S. Noorani and R. Nazar, Explicit series solutions of some linear and nonlinear Schrödinger equations via the homotopy analysis method, Commun. Nonlin. Sci. Numer. Simul., 14 (2009), 1196-1207.  doi: 10.1016/j.cnsns.2008.01.008.

[2]

Z. Alijani, D. Baleanu, B. Shiri and G. C. Wu, Spline collocation methods for systems of fuzzy fractional differential equations, Chaos Soliton Fract., 131 (2020), 109510, 12 pp. doi: 10.1016/j. chaos.2019.109510.

[3]

G. AmadorK. ColonN. LunaG. MercadoE. Pereira and E. Suazo, On solutions for linear and nonlinear Schrödinger equations with variable coefficients: A computational approach, Symmetry, 8 (2016), 38-54.  doi: 10.3390/sym8060038.

[4]

J. Biazar and H. Ghazvini, Exact solutions for non-linear Schrödinger equations by He's homotopy perturbation method, Phys. Lett. A, 366 (2007), 79-84.  doi: 10.1016/j.physleta.2007.01.060.

[5]

A. Borhanifar and R. Abazari, Numerical study of nonlinear Schrödinger and coupled Schrödinger equations by differential transformation method, Optics Commun., 283 (2010), 2026-2031.  doi: 10.1016/j.optcom.2010.01.046.

[6]

E. BabolianJ. Saeidian and M. Paripour, Application of the homotopy analysis method for solving equal-width wave and modified equal-width wave equations, Z. Naturforsch, 64a (2009), 685-690.  doi: 10.1515/zna-2009-1103.

[7]

F. B. M. Belgacem, A. A. Karaballi and S. L. Kalla, Analytical investigations of the Sumudu transform and applications to integral production equations, Math. Prob. Eng., (2003), 103-118. doi: 10.1155/S1024123X03207018.

[8]

D. BaleanuJ. H. Asad and A. Jajarmi, New aspects of the motion of a particle in a circular cavity, Proceedings of the Romanian Academy, Series A, 19 (2018), 361-367. 

[9]

D. Baleanu, S. S. Sajjadi, A. Jajarmi and J. H. Asad, New features of the fractional Euler-Lagrange equations for a physical system within non-singular derivative operator, Europ. Phys. J. Plus, 134 (2019), 181. doi: 10.1140/epjp/i2019-12561-x.

[10]

D. BaleanuJ. H. Asad and A. Jajarmi, The fractional model of spring pendulum: new features within different kernels, P. Romanian Acad. A, 19 (2018), 447-454. 

[11]

D. Baleanu and B. Shiri, Collocation methods for fractional differential equations involving non-singular kernel, Chaos Soliton Fract., 116 (2018), 136-145.  doi: 10.1016/j.chaos.2018.09.020.

[12]

J. BiazarR. AnsariK. Hosseini and P. Gholamin, Solution of the linear and non-linear Schrödinger equations using homotopy perturbation and Adomian decomposition methods, Int. Math. Forum, 3 (2008), 1891-1897. 

[13]

J. Cresser, Quantum Physics Notes, Department of Physics, Macquarie University, Australia, (2011).

[14] D. J. Griffiths and D. F. Schroeter, Introduction to Quantum Mechanics, Cambridge University Press, 2018.  doi: 10.1017/9781316995433.
[15]

A. GoswamiJ. SinghD. Kumar and S. Gupta, An efficient analytical technique for fractional partial differential equations occurring in ion acoustic waves in plasma, J. Ocean Eng. Sci., 4 (2019), 85-99.  doi: 10.1016/j.joes.2019.01.003.

[16]

A. GoswamiJ. SinghD. Kumar and S. Rathore, An analytical approach to the fractional Equal Width equations describing hydro-magnetic waves in cold plasma, Physica A, 524 (2019), 563-575.  doi: 10.1016/j.physa.2019.04.058.

[17]

A. GoswamiSu shilaJ. Singh and D. Kumar, Numerical computation of fractional Kersten-Krasil'shchik coupled KdV-mKdV system occurring in multi-component plasmas, AIMS Math., 5 (2020), 2346-2368.  doi: 10.3934/math.2020155.

[18]

A. GoswamiJ. Singh and D. Kumar, A reliable algorithm for KdV equations arising in warm plasma, Nonlin. Eng., 5 (2016), 7-16.  doi: 10.1515/nleng-2015-0024.

[19]

A. GoswamiJ. Singh and D. Kumar, Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9 (2018), 2265-2273.  doi: 10.1016/j.asej.2017.03.004.

[20]

A. Ghorbani and J. Saberi-Nadjafi, He's homotopy perturbation method for calculating adomian polynomials, Int. J. Nonlin. Sci. Num. Simul., 8 (2007), 229-232. 

[21]

A. Ghorbani, Beyond Adomian polynomials: He polynomials, Chaos Soliton Fract., 39 (2009), 1486-1492.  doi: 10.1016/j.chaos.2007.06.034.

[22]

J. H. He, Homotopy perturbation method: A new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73-79.  doi: 10.1016/S0096-3003(01)00312-5.

[23]

K. Hosseini, A. Zabihi, F. Samadani and R. Ansari, New explicit exact solutions of the unstable nonlinear Schrödinger equation using the expa and hyperbolic function methods, Opt. Quant. Electron., 50 (2018).

[24]

K. HosseiniF. SamadaniD. Kumar and M. Faridi, New optical solitons of cubic-quartic nonlinear Schrödinger equation, Optik, 157 (2018), 1101-1105.  doi: 10.1016/j.ijleo.2017.11.124.

[25]

K. HosseiniD. KumarM. Kaplan and E. Y. Bejarbaneh, New exact traveling wave solutions of the unstable nonlinear Schrödinger equations, Commun. Theor. Phys., 68 (2017), 761-767.  doi: 10.1088/0253-6102/68/6/761.

[26]

E. K. Jaradat, O. Alomari, M. Abudayah and A. Al-Faqih, An approximate analytical solution of the nonlinear Schrödinger equation with harmonic oscillator using homotopy perturbation method and Laplace-Adomian decomposition method, Adv. Math. Phys., 2018 (2018), 6765021, 11 pp. doi: 10.1155/2018/6765021.

[27]

A. Jajarmi, D. Baleanu, S. S. Sajjadi and J. H. Asad, A new feature of the fractional Euler-Lagrange equations for a coupled oscillator using a nonsingular operator approach, Front. Phys., 26 (2019), 196. doi: 10.3389/fphy.2019.00196.

[28]

Y. Khan and Q. Wu, Homotopy perturbation transform method for nonlinear equations using He's polynomials, Comput. Math Appl., 61 (2011), 1963-1967.  doi: 10.1016/j.camwa.2010.08.022.

[29]

M. KaplanK. HosseiniF. Samadani and N. Raza, Optical soliton solutions of the cubic-quintic non-linear Schrödinger equation including an anti-cubic term, J. Moder. Opt., 65 (2018), 1431-1436. 

[30]

R. I. Nuruddeen, Elzaki decomposition method and its applications in solving linear and nonlinear Schrödinger equations, Sohag J. Math., 4 (2017), 31-35.  doi: 10.18576/sjm/040201.

[31]

A. NiknamA. A. Rajabi and M. Solaimani, Solutions of D-dimensional Schrödinger equation for Woods-Saxon potential with spin-orbit, coulomb and centrifugal terms through a new hybrid numerical fitting Nikiforov-Uvarov method, J. Theor. Appl. Phys., 10 (2016), 53-59.  doi: 10.1007/s40094-015-0201-9.

[32]

A. Sadighi and D. D. Ganji, Analytic treatment of linear and nonlinear Schrödinger equations: A study with homotopy perturbation and Adomian decomposition methods, Phys. Lett. A, 372 (2008), 465-469.  doi: 10.1016/j.physleta.2007.07.065.

[33]

B. Shiri and D. Baleanu, System of fractional differential algebraic equations with applications, Chaos Soliton Fractal, 120 (2019), 203-212.  doi: 10.1016/j.chaos.2019.01.028.

[34]

J. SinghD. Kumar and Su shila, Homotopy perturbation Sumudu transform method for nonlinear equations, Adv. Appl. Math. Mech., 4 (2011), 165-175. 

[35]

J. Singh, D. Kumar and A. Kilicman, Homotopy perturbation method for fractional gas dynamics equation using sumudu transform, Abst. Appl. Anal., 2013 (2013), 934060, 8 pp. doi: 10.1155/2013/934060.

[36]

A. ShidfarA. MolabahramiA. Babaei and A. Yazdanian, A study on the d-dimensional Schrödinger equation with a power-law nonlinearity, Chaos Soliton Fract., 42 (2009), 2154-2158.  doi: 10.1016/j.chaos.2009.03.139.

[37]

A. ShidfarA. MolabahramiA. Babaei and A. Yazdanian, A series solution of the Cauchy problem for the generalized d-dimensional Schrödinger equation with a power-law nonlinearity, Comput. Math. Appl., 59 (2010), 1500-1508.  doi: 10.1016/j.camwa.2009.11.017.

[38]

A. M. Wazwaz, A study on linear and nonlinear Schrödinger equations by the variational iteration method, Chaos Soliton Fract., 37 (2008), 1136-1142.  doi: 10.1016/j.chaos.2006.10.009.

[39]

G. K. Watugala, Sumudu transform- a new integral transform to solve differential equations and control engineering problems, Int. J. Math. Edu. Sci. Tech., 24 (1993), 35-43.  doi: 10.1080/0020739930240105.

[40]

L. ZhengT. WangX. Zhang and L. Ma, The nonlinear Schrödinger harmonic oscillator problem with small odd or even disturbances, Appl. Math. Lett., 26 (2013), 463-468.  doi: 10.1016/j.aml.2012.11.009.

Figure 1.  Surface shows the imaginary part of the 1-D wave function $ \psi \left(\xi ,\eta \right) $ at (a) $ \alpha = 1 $, (b) $ \alpha = 0.75 $ and (c) $ \alpha = 0.50 $
Figure 2.  Comparison of profile of imaginary part of $ \psi \left(\xi ,\eta \right) $ at different values of $ \alpha $ (a) $ -5\le \xi \le 5 $ and $ \eta = 0.01 $(b) $ 0\le \eta \le 1 $ and $ \xi = 1. $
Figure 3.  Surface shows the real part of the 1-D wave function $ \psi \left(\xi ,\eta \right) $ at (a) $ \alpha = 1 $, (b) $ \alpha = 0.75 $ and (c) $ \alpha = 0.50 $
Figure 4.  Comparison of profile of real part of $ \psi \left(\xi ,\eta \right) $ at different values of $ \alpha $ (a) $ -5\le \xi \le 5 $ and $ \eta = 0.01 $(b) $ 0\le \eta \le 1 $ and $ \xi = 1. $
Figure 5.  Surface shows the imaginary part of the 2-D wave function $ \psi \left(\xi ,\zeta, \eta \right) $ at (a) $ \alpha = 1 $, (b) $ \alpha = 0.75 $ and (c) $ \alpha = 0.50 $
Figure 6.  Comparison of profile of imaginary part of $ \psi \left(\xi ,\zeta,\eta \right) $ for $ \zeta = 1 $ at different values of $ \alpha $ (a) $ -5\le \xi \le 5 $ and $ \eta = 0.01 $(b) $ 0\le \eta \le 1 $ and $ \xi = 1. $
Figure 7.  Surface shows the real part of the 2-D wave function $ \psi \left(\xi ,\zeta, \eta \right) $ at (a) $ \alpha = 1 $, (b) $ \alpha = 0.75 $ and (c) $ \alpha = 0.50 $
Figure 8.  Comparison of profile of real part of $ \psi \left(\xi ,\zeta,\eta \right) $ for $ \zeta = 1 $at different values of $ \alpha $ (a) $ -5\le \xi \le 5 $ and $ \eta = 0.01 $(b) $ 0\le \eta \le 1 $ and $ \xi = 1. $
Figure 9.  Surface shows the imaginary part of the 3-D wave function $ \psi \left(\xi ,\zeta,\chi, \eta \right) $ at (a) $ \alpha = 1 $, (b) $ \alpha = 0.75 $ and (c) $ \alpha = 0.50 $
Figure 10.  Comparison of profile of imaginary part of $ \psi \left(\xi ,\zeta,\chi, \eta \right) $ for $ \zeta = \chi = 1 $ at different values of $ \alpha $ (a) $ -5\le \xi \le 5 $ and $ \eta = 0.01 $ (b) $ 0\le \eta \le 1 $ and $ \xi = 1. $
Figure 11.  Surface shows the real part of the 3-D wave function $ \psi \left(\xi ,\zeta,\chi, \eta \right) $ at (a) $ \alpha = 1 $, (b) $ \alpha = 0.75 $ and (c) $ \alpha = 0.50 $
Figure 12.  Comparison of profile of real part of $ \psi \left(\xi ,\zeta,\chi, \eta \right) $ for $ \zeta = \chi = 1 $ at different values of $ \alpha $ (a) $ -5\le \xi \le 5 $ and $ \eta = 0.01 $(b) $ 0\le \eta \le 1 $ and $ \xi = 1. $
[1]

Zhiyan Ding, Hichem Hajaiej. On a fractional Schrödinger equation in the presence of harmonic potential. Electronic Research Archive, 2021, 29 (5) : 3449-3469. doi: 10.3934/era.2021047

[2]

Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039

[3]

Divyang G. Bhimani. The nonlinear Schrödinger equations with harmonic potential in modulation spaces. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5923-5944. doi: 10.3934/dcds.2019259

[4]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[5]

Younghun Hong, Yannick Sire. On Fractional Schrödinger Equations in sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2265-2282. doi: 10.3934/cpaa.2015.14.2265

[6]

Yonggeun Cho, Hichem Hajaiej, Gyeongha Hwang, Tohru Ozawa. On the orbital stability of fractional Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1267-1282. doi: 10.3934/cpaa.2014.13.1267

[7]

Guoyuan Chen, Youquan Zheng. Concentration phenomenon for fractional nonlinear Schrödinger equations. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2359-2376. doi: 10.3934/cpaa.2014.13.2359

[8]

Toshiyuki Suzuki. Semilinear Schrödinger evolution equations with inverse-square and harmonic potentials via pseudo-conformal symmetry. Communications on Pure and Applied Analysis, 2021, 20 (12) : 4347-4377. doi: 10.3934/cpaa.2021163

[9]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[10]

Zupei Shen, Zhiqing Han, Qinqin Zhang. Ground states of nonlinear Schrödinger equations with fractional Laplacians. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2115-2125. doi: 10.3934/dcdss.2019136

[11]

Chu-Hee Cho, Youngwoo Koh, Ihyeok Seo. On inhomogeneous Strichartz estimates for fractional Schrödinger equations and their applications. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 1905-1926. doi: 10.3934/dcds.2016.36.1905

[12]

Gerd Grubb. Limited regularity of solutions to fractional heat and Schrödinger equations. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3609-3634. doi: 10.3934/dcds.2019148

[13]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure and Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[14]

Miao Du, Lixin Tian. Infinitely many solutions of the nonlinear fractional Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3407-3428. doi: 10.3934/dcdsb.2016104

[15]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete and Continuous Dynamical Systems, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[16]

Harald Friedrich. Semiclassical and large quantum number limits of the Schrödinger equation. Conference Publications, 2003, 2003 (Special) : 288-294. doi: 10.3934/proc.2003.2003.288

[17]

Shi Jin, Peng Qi. A hybrid Schrödinger/Gaussian beam solver for quantum barriers and surface hopping. Kinetic and Related Models, 2011, 4 (4) : 1097-1120. doi: 10.3934/krm.2011.4.1097

[18]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[19]

Weiwei Ao, Juncheng Wei, Wen Yang. Infinitely many positive solutions of fractional nonlinear Schrödinger equations with non-symmetric potentials. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5561-5601. doi: 10.3934/dcds.2017242

[20]

Ji Shu. Random attractors for stochastic discrete Klein-Gordon-Schrödinger equations driven by fractional Brownian motions. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1587-1599. doi: 10.3934/dcdsb.2017077

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (324)
  • HTML views (344)
  • Cited by (0)

[Back to Top]