[1]
|
M. M. Alsuyuti, E. Z. Doha, S. S. Ezz-Eldien, B. I. Bayoumi and D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389-1412.
doi: 10.1002/mma.5431.
|
[2]
|
D. Baleanu, R. Darzi and B. Agheli, Existence results for Langevin equation involving Atangana-Baleanu fractional operators, Mathematics, 8 (2020), 408.
doi: 10.3390/math8030408.
|
[3]
|
D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Models (Series on Complexity, Nonlinearity and Chaos), Word Scientific, 2012.
doi: 10.1142/9789814355216.
|
[4]
|
S. Bhatter, A. Mathur, D. Kumar and J. Singh, A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A., 537 (2020), 122578, 13 pp.
doi: 10.1016/j.physa.2019.122578.
|
[5]
|
A. Bueno-Orovio, D. Kay and K. Burrage, Fourier spectral methods for fractional in space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937-954.
doi: 10.1007/s10543-014-0484-2.
|
[6]
|
Y. Chen, X. Han and L. Liu, Numerical solution for a class of linear system of fractional differential equations by the haar wavelet method and the convergence analysis, Comput. Model. Eng. Sci., 97 (2014), 391-405.
|
[7]
|
M. Dehghan and M. Safarpoor, Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations, Int. J. Comput. Math., 95 (2018), 2066-2081.
doi: 10.1080/00207160.2017.1365141.
|
[8]
|
A. Deshpande and V. Daftardar-Gejji, Local stable manifold theorem for fractional systems, Nonlinear Dynam., 83 (2016), 2435-2452.
doi: 10.1007/s11071-015-2492-4.
|
[9]
|
V. Daftardar-Gejji and A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511-522.
doi: 10.1016/j.jmaa.2004.01.013.
|
[10]
|
H. Delavari, D. Baleanu and J. Sadati, Stability analysis of Caputo fractional order nonlinear systems revisited, Nonlinear Dyna., 67 (2012), 2433-2439.
doi: 10.1007/s11071-011-0157-5.
|
[11]
|
S. Esmaeili and R. Garrappa, A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation, Int. J. Comput. Math., 92 (2015), 980-994.
doi: 10.1080/00207160.2014.915962.
|
[12]
|
R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 5 pp.
doi: 10.1016/j.chaos.2019.109405.
|
[13]
|
M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A., 554 (2020), 123941, 15 pp.
doi: 10.1016/j.physa.2019.123941.
|
[14]
|
M. M. Ghalib, A. A. Zafar, Z. Hammouch, M. B. Riaz and K. Shabbir, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Disret Contin. Dyn. S., 13 (2020), 683-693.
doi: 10.3934/dcdss.2020037.
|
[15]
|
R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 4 pp.
doi: 10.1016/j.chaos.2019.109405.
|
[16]
|
V. R. Hosseini, W. Chen and Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary Elements, 38 (2014), 31-39.
doi: 10.1016/j.enganabound.2013.10.009.
|
[17]
|
M. H. Heydari, Z. Avazzadeh, Y. Yang and C. A. Cattani, A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations, Comput. Appl.Math., 39 (2020), 2-23.
doi: 10.1007/s40314-019-0936-z.
|
[18]
|
P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.
|
[19]
|
D. Ingman and J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193 (2004), 5585-5595.
doi: 10.1016/j.cma.2004.06.029.
|
[20]
|
A. Jhinga and V. Daftardar-Gejji, A new numerical method for solving fractional delay differential equations, Comput. Appl. Math., 38 (2019), 166-184.
doi: 10.1007/s40314-019-0951-0.
|
[21]
|
M. M. Khader, A. Shloof and H. Ali, On the numerical simulation and convergence study for system of non-linear fractional dynamical model of marriage, New Trends Math. Scie., 5 (2017), 130-141.
doi: 10.20852/ntmsci.2017.223.
|
[22]
|
D. Kumar, J. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2019), 443-457.
doi: 10.1002/mma.5903.
|
[23]
|
S. Kazem and M. Dehghan, Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput., 35 (2019), 229-241.
doi: 10.1007/s00366-018-0595-5.
|
[24]
|
M. H. Kim, G. C. Ri and O. Hyong-Chol, Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fract. Calculus Appl. Anal., 17 (2014), 79-95.
doi: 10.2478/s13540-014-0156-6.
|
[25]
|
D. Kumar, R. P. Agarwal and J. Singh, A modified numerical scheme and conver- gence analysis for fractional model of lienard's equation, J. Comput. Appl. Math., 339 (2018), 405-413.
doi: 10.1016/j.cam.2017.03.011.
|
[26]
|
D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259.
doi: 10.3390/e20040259.
|
[27]
|
A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
|
[28]
|
C. Li and F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat Chaos, 22 (2012), 1230014, 28 pp.
doi: 10.1142/S0218127412300145.
|
[29]
|
Y. Li, Y. Q. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821.
doi: 10.1016/j.camwa.2009.08.019.
|
[30]
|
F. Liu, P. Zhuang, I. Turner, K. Burrage and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871-3878.
doi: 10.1016/j.apm.2013.10.007.
|
[31]
|
C. Li and Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 71 (2013), 621-633.
doi: 10.1007/s11071-012-0601-1.
|
[32]
|
K. S. Miller and B. Ross, An Itroduction to the Fractional Calculus and Fractional Differential Equations, , Johan Willey and Sons, Inc. New York, 1993.
|
[33]
|
M. Malik and V. Kumar, Existence, stability and controllability results of coupled fractional dynamical system on time scales, Bull. Malays. Math. Sci. Soc., 43 (2020), 3369-3394.
doi: 10.1007/s40840-019-00871-0.
|
[34]
|
K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A., 523 (2019) 1072–1090.
doi: 10.1016/j.physa.2019.04.017.
|
[35]
|
K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.
|
[36]
|
I. Podlubny, Fractional Differential Equations Calculus, Academic Press, New York, 1999.
|
[37]
|
E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 40 (2016), 112-128.
doi: 10.1016/j.cnsns.2016.04.020.
|
[38]
|
J. Singh, D. Kumar, D. Baleanu and S. Rathore, On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588-1595.
doi: 10.1002/mma.5458.
|
[39]
|
K. Sayevand and K. Pichaghchi, Successive approximation: A survey on stable manifold of fractional differential systems, Fract. Calc. Appl. Anal., 18 (2015), 621-641.
doi: 10.1515/fca-2015-0038.
|
[40]
|
K. Sayevand and M. Rostami, Fractional optimal control problems: optimality conditions and numerical solution, IMA J. Math. Control Info., 35 (2018), 123-148.
doi: 10.1093/imamci/dnw041.
|
[41]
|
K. Sayevand and M. Rostami, General fractional variational problem depending on indefinite integrals, Numer. Algor., 72 (2016), 959-987.
doi: 10.1007/s11075-015-0076-5.
|
[42]
|
J. Stoer, R. Bulirsch and R. Bartels, Introduction to Numerical Analysis, Springer, 2002.
doi: 10.1007/978-0-387-21738-3.
|
[43]
|
K. Sayevand, J. Tenreiro Machado and V. Moradi, A new non-standard finite difference method for analysing the fractional Navier-Stokes equations, Comput. Math. Appl., 78 (2019), 1681-1694.
doi: 10.1016/j.camwa.2018.12.016.
|
[44]
|
J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991.
|
[45]
|
J. Singh, D. Kumar, D. Baleanu and S. Rathore, An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12-24.
doi: 10.1016/j.amc.2018.04.025.
|
[46]
|
V. E. Tarasov, Fractional Dynamics: Aapplications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science, Business Media, 2010.
doi: 10.1007/978-3-642-14003-7.
|
[47]
|
S. Ucar, E. Ucar, N. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solition Fract., 118 (2019), 300-306.
doi: 10.1016/j.chaos.2018.12.003.
|
[48]
|
V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 2, Springer, Berlin, 2003.
doi: 10.1007/978-3-642-33911-0.
|
[49]
|
J. Yu, C. Hu and H. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Netw., 35 (2012), 82-87.
|
[50]
|
M. A. Zaky, A legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525-3538.
doi: 10.1007/s40314-017-0530-1.
|
[51]
|
X. Zhang, C. Zhu and Z. Wu, Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl., 2013 (2013), 80-103.
doi: 10.1186/1687-2770-2013-80.
|