• Previous Article
    Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions
  • DCDS-S Home
  • This Issue
  • Next Article
    Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative
October  2021, 14(10): 3763-3783. doi: 10.3934/dcdss.2021022

A robust computational framework for analyzing fractional dynamical systems

Faculty of Mathematical Sciences, Malayer University, Malayer, Iran

* Corresponding author: Khosro Sayevand

Received  February 2020 Revised  April 2020 Published  October 2021 Early access  March 2021

This study outlines a modified implicit finite difference method for approximating the local stable manifold near a hyperbolic equilibrium point for a nonlinear systems of fractional differential equations. The fractional derivative is described in the Caputo sense of order $ \alpha\; (0<\alpha \le1) $ which is approximated based on the modified trapezoidal quadrature rule of order $ O(\triangle t ^{2-\alpha}) $. The solution existence, uniqueness and stability of the proposed method is discussed. Three numerical examples are presented and comparisons are made to confirm the reliability and effectiveness of the proposed method.

Citation: Khosro Sayevand, Valeyollah Moradi. A robust computational framework for analyzing fractional dynamical systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (10) : 3763-3783. doi: 10.3934/dcdss.2021022
References:
[1]

M. M. AlsuyutiE. Z. DohaS. S. Ezz-EldienB. I. Bayoumi and D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389-1412.  doi: 10.1002/mma.5431.  Google Scholar

[2]

D. Baleanu, R. Darzi and B. Agheli, Existence results for Langevin equation involving Atangana-Baleanu fractional operators, Mathematics, 8 (2020), 408. doi: 10.3390/math8030408.  Google Scholar

[3]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Models (Series on Complexity, Nonlinearity and Chaos), Word Scientific, 2012. doi: 10.1142/9789814355216.  Google Scholar

[4]

S. Bhatter, A. Mathur, D. Kumar and J. Singh, A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A., 537 (2020), 122578, 13 pp. doi: 10.1016/j.physa.2019.122578.  Google Scholar

[5]

A. Bueno-OrovioD. Kay and K. Burrage, Fourier spectral methods for fractional in space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937-954.  doi: 10.1007/s10543-014-0484-2.  Google Scholar

[6]

Y. ChenX. Han and L. Liu, Numerical solution for a class of linear system of fractional differential equations by the haar wavelet method and the convergence analysis, Comput. Model. Eng. Sci., 97 (2014), 391-405.   Google Scholar

[7]

M. Dehghan and M. Safarpoor, Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations, Int. J. Comput. Math., 95 (2018), 2066-2081.  doi: 10.1080/00207160.2017.1365141.  Google Scholar

[8]

A. Deshpande and V. Daftardar-Gejji, Local stable manifold theorem for fractional systems, Nonlinear Dynam., 83 (2016), 2435-2452.  doi: 10.1007/s11071-015-2492-4.  Google Scholar

[9]

V. Daftardar-Gejji and A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511-522.  doi: 10.1016/j.jmaa.2004.01.013.  Google Scholar

[10]

H. DelavariD. Baleanu and J. Sadati, Stability analysis of Caputo fractional order nonlinear systems revisited, Nonlinear Dyna., 67 (2012), 2433-2439.  doi: 10.1007/s11071-011-0157-5.  Google Scholar

[11]

S. Esmaeili and R. Garrappa, A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation, Int. J. Comput. Math., 92 (2015), 980-994.  doi: 10.1080/00207160.2014.915962.  Google Scholar

[12]

R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 5 pp. doi: 10.1016/j.chaos.2019.109405.  Google Scholar

[13]

M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A., 554 (2020), 123941, 15 pp. doi: 10.1016/j.physa.2019.123941.  Google Scholar

[14]

M. M. GhalibA. A. ZafarZ. HammouchM. B. Riaz and K. Shabbir, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Disret Contin. Dyn. S., 13 (2020), 683-693.  doi: 10.3934/dcdss.2020037.  Google Scholar

[15]

R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 4 pp. doi: 10.1016/j.chaos.2019.109405.  Google Scholar

[16]

V. R. HosseiniW. Chen and Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary Elements, 38 (2014), 31-39.  doi: 10.1016/j.enganabound.2013.10.009.  Google Scholar

[17]

M. H. HeydariZ. AvazzadehY. Yang and C. A. Cattani, A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations, Comput. Appl.Math., 39 (2020), 2-23.  doi: 10.1007/s40314-019-0936-z.  Google Scholar

[18]

P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.  Google Scholar

[19]

D. Ingman and J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193 (2004), 5585-5595.  doi: 10.1016/j.cma.2004.06.029.  Google Scholar

[20]

A. Jhinga and V. Daftardar-Gejji, A new numerical method for solving fractional delay differential equations, Comput. Appl. Math., 38 (2019), 166-184.  doi: 10.1007/s40314-019-0951-0.  Google Scholar

[21]

M. M. KhaderA. Shloof and H. Ali, On the numerical simulation and convergence study for system of non-linear fractional dynamical model of marriage, New Trends Math. Scie., 5 (2017), 130-141.  doi: 10.20852/ntmsci.2017.223.  Google Scholar

[22]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2019), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[23]

S. Kazem and M. Dehghan, Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput., 35 (2019), 229-241.  doi: 10.1007/s00366-018-0595-5.  Google Scholar

[24]

M. H. KimG. C. Ri and O. Hyong-Chol, Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fract. Calculus Appl. Anal., 17 (2014), 79-95.  doi: 10.2478/s13540-014-0156-6.  Google Scholar

[25]

D. KumarR. P. Agarwal and J. Singh, A modified numerical scheme and conver- gence analysis for fractional model of lienard's equation, J. Comput. Appl. Math., 339 (2018), 405-413.  doi: 10.1016/j.cam.2017.03.011.  Google Scholar

[26]

D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259.  Google Scholar

[27]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[28]

C. Li and F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat Chaos, 22 (2012), 1230014, 28 pp. doi: 10.1142/S0218127412300145.  Google Scholar

[29]

Y. LiY. Q. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821.  doi: 10.1016/j.camwa.2009.08.019.  Google Scholar

[30]

F. LiuP. ZhuangI. TurnerK. Burrage and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871-3878.  doi: 10.1016/j.apm.2013.10.007.  Google Scholar

[31]

C. Li and Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 71 (2013), 621-633.  doi: 10.1007/s11071-012-0601-1.  Google Scholar

[32]

K. S. Miller and B. Ross, An Itroduction to the Fractional Calculus and Fractional Differential Equations, , Johan Willey and Sons, Inc. New York, 1993.  Google Scholar

[33]

M. Malik and V. Kumar, Existence, stability and controllability results of coupled fractional dynamical system on time scales, Bull. Malays. Math. Sci. Soc., 43 (2020), 3369-3394.  doi: 10.1007/s40840-019-00871-0.  Google Scholar

[34]

K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A., 523 (2019) 1072–1090. doi: 10.1016/j.physa.2019.04.017.  Google Scholar

[35] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.   Google Scholar
[36] I. Podlubny, Fractional Differential Equations Calculus, Academic Press, New York, 1999.   Google Scholar
[37]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 40 (2016), 112-128.  doi: 10.1016/j.cnsns.2016.04.020.  Google Scholar

[38]

J. SinghD. KumarD. Baleanu and S. Rathore, On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588-1595.  doi: 10.1002/mma.5458.  Google Scholar

[39]

K. Sayevand and K. Pichaghchi, Successive approximation: A survey on stable manifold of fractional differential systems, Fract. Calc. Appl. Anal., 18 (2015), 621-641.  doi: 10.1515/fca-2015-0038.  Google Scholar

[40]

K. Sayevand and M. Rostami, Fractional optimal control problems: optimality conditions and numerical solution, IMA J. Math. Control Info., 35 (2018), 123-148.  doi: 10.1093/imamci/dnw041.  Google Scholar

[41]

K. Sayevand and M. Rostami, General fractional variational problem depending on indefinite integrals, Numer. Algor., 72 (2016), 959-987.  doi: 10.1007/s11075-015-0076-5.  Google Scholar

[42]

J. Stoer, R. Bulirsch and R. Bartels, Introduction to Numerical Analysis, Springer, 2002. doi: 10.1007/978-0-387-21738-3.  Google Scholar

[43]

K. SayevandJ. Tenreiro Machado and V. Moradi, A new non-standard finite difference method for analysing the fractional Navier-Stokes equations, Comput. Math. Appl., 78 (2019), 1681-1694.  doi: 10.1016/j.camwa.2018.12.016.  Google Scholar

[44]

J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. Google Scholar

[45]

J. SinghD. KumarD. Baleanu and S. Rathore, An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12-24.  doi: 10.1016/j.amc.2018.04.025.  Google Scholar

[46]

V. E. Tarasov, Fractional Dynamics: Aapplications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science, Business Media, 2010. doi: 10.1007/978-3-642-14003-7.  Google Scholar

[47]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solition Fract., 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.  Google Scholar

[48]

V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 2, Springer, Berlin, 2003. doi: 10.1007/978-3-642-33911-0.  Google Scholar

[49]

J. YuC. Hu and H. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Netw., 35 (2012), 82-87.   Google Scholar

[50]

M. A. Zaky, A legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525-3538.  doi: 10.1007/s40314-017-0530-1.  Google Scholar

[51]

X. ZhangC. Zhu and Z. Wu, Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl., 2013 (2013), 80-103.  doi: 10.1186/1687-2770-2013-80.  Google Scholar

show all references

References:
[1]

M. M. AlsuyutiE. Z. DohaS. S. Ezz-EldienB. I. Bayoumi and D. Baleanu, Modified Galerkin algorithm for solving multitype fractional differential equations, Math. Methods Appl. Sci., 42 (2019), 1389-1412.  doi: 10.1002/mma.5431.  Google Scholar

[2]

D. Baleanu, R. Darzi and B. Agheli, Existence results for Langevin equation involving Atangana-Baleanu fractional operators, Mathematics, 8 (2020), 408. doi: 10.3390/math8030408.  Google Scholar

[3]

D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, Fractional Calculus Models and Numerical Models (Series on Complexity, Nonlinearity and Chaos), Word Scientific, 2012. doi: 10.1142/9789814355216.  Google Scholar

[4]

S. Bhatter, A. Mathur, D. Kumar and J. Singh, A new analysis of fractional Drinfeld-Sokolov-Wilson model with exponential memory, Physica A., 537 (2020), 122578, 13 pp. doi: 10.1016/j.physa.2019.122578.  Google Scholar

[5]

A. Bueno-OrovioD. Kay and K. Burrage, Fourier spectral methods for fractional in space reaction-diffusion equations, BIT Numer. Math., 54 (2014), 937-954.  doi: 10.1007/s10543-014-0484-2.  Google Scholar

[6]

Y. ChenX. Han and L. Liu, Numerical solution for a class of linear system of fractional differential equations by the haar wavelet method and the convergence analysis, Comput. Model. Eng. Sci., 97 (2014), 391-405.   Google Scholar

[7]

M. Dehghan and M. Safarpoor, Application of the dual reciprocity boundary integral equation approach to solve fourth-order time-fractional partial differential equations, Int. J. Comput. Math., 95 (2018), 2066-2081.  doi: 10.1080/00207160.2017.1365141.  Google Scholar

[8]

A. Deshpande and V. Daftardar-Gejji, Local stable manifold theorem for fractional systems, Nonlinear Dynam., 83 (2016), 2435-2452.  doi: 10.1007/s11071-015-2492-4.  Google Scholar

[9]

V. Daftardar-Gejji and A. Babakhani, Analysis of a system of fractional differential equations, J. Math. Anal. Appl., 293 (2004), 511-522.  doi: 10.1016/j.jmaa.2004.01.013.  Google Scholar

[10]

H. DelavariD. Baleanu and J. Sadati, Stability analysis of Caputo fractional order nonlinear systems revisited, Nonlinear Dyna., 67 (2012), 2433-2439.  doi: 10.1007/s11071-011-0157-5.  Google Scholar

[11]

S. Esmaeili and R. Garrappa, A pseudo-spectral scheme for the approximate solution of a time-fractional diffusion equation, Int. J. Comput. Math., 92 (2015), 980-994.  doi: 10.1080/00207160.2014.915962.  Google Scholar

[12]

R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 5 pp. doi: 10.1016/j.chaos.2019.109405.  Google Scholar

[13]

M. M. Ghalib, A. A. Zafar, M. B. Riaz, Z. Hammouch and K. Shabbir, Analytical approach for the steady MHD conjugate viscous fluid flow in a porous medium with nonsingular fractional derivative, Physica A., 554 (2020), 123941, 15 pp. doi: 10.1016/j.physa.2019.123941.  Google Scholar

[14]

M. M. GhalibA. A. ZafarZ. HammouchM. B. Riaz and K. Shabbir, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Disret Contin. Dyn. S., 13 (2020), 683-693.  doi: 10.3934/dcdss.2020037.  Google Scholar

[15]

R. M. Ganji, H. Jafari and D. Baleanu, A new approach for solving multi variable orders differential equations with Mittag-Leffler kernel, Chaos Soltion Fract., 130 (2020), 109405, 4 pp. doi: 10.1016/j.chaos.2019.109405.  Google Scholar

[16]

V. R. HosseiniW. Chen and Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Boundary Elements, 38 (2014), 31-39.  doi: 10.1016/j.enganabound.2013.10.009.  Google Scholar

[17]

M. H. HeydariZ. AvazzadehY. Yang and C. A. Cattani, A cardinal method to solve coupled nonlinear variable-order time fractional sine-Gordon equations, Comput. Appl.Math., 39 (2020), 2-23.  doi: 10.1007/s40314-019-0936-z.  Google Scholar

[18]

P. Hartman, Ordinary Differential Equations, John Wiley and Sons, New York, 1964.  Google Scholar

[19]

D. Ingman and J. Suzdalnitsky, Control of damping oscillations by fractional differential operator with time-dependent order, Comput. Methods Appl. Mech. Eng., 193 (2004), 5585-5595.  doi: 10.1016/j.cma.2004.06.029.  Google Scholar

[20]

A. Jhinga and V. Daftardar-Gejji, A new numerical method for solving fractional delay differential equations, Comput. Appl. Math., 38 (2019), 166-184.  doi: 10.1007/s40314-019-0951-0.  Google Scholar

[21]

M. M. KhaderA. Shloof and H. Ali, On the numerical simulation and convergence study for system of non-linear fractional dynamical model of marriage, New Trends Math. Scie., 5 (2017), 130-141.  doi: 10.20852/ntmsci.2017.223.  Google Scholar

[22]

D. KumarJ. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, Math. Methods Appl. Sci., 43 (2019), 443-457.  doi: 10.1002/mma.5903.  Google Scholar

[23]

S. Kazem and M. Dehghan, Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL), Eng. Comput., 35 (2019), 229-241.  doi: 10.1007/s00366-018-0595-5.  Google Scholar

[24]

M. H. KimG. C. Ri and O. Hyong-Chol, Operational method for solving multi-term fractional differential equations with the generalized fractional derivatives, Fract. Calculus Appl. Anal., 17 (2014), 79-95.  doi: 10.2478/s13540-014-0156-6.  Google Scholar

[25]

D. KumarR. P. Agarwal and J. Singh, A modified numerical scheme and conver- gence analysis for fractional model of lienard's equation, J. Comput. Appl. Math., 339 (2018), 405-413.  doi: 10.1016/j.cam.2017.03.011.  Google Scholar

[26]

D. Kumar, F. Tchier, J. Singh and D. Baleanu, An efficient computational technique for fractal vehicular traffic flow, Entropy, 20 (2018), 259. doi: 10.3390/e20040259.  Google Scholar

[27]

A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.  Google Scholar

[28]

C. Li and F. Zeng, Finite difference methods for fractional differential equations, Int. J. Bifurcat Chaos, 22 (2012), 1230014, 28 pp. doi: 10.1142/S0218127412300145.  Google Scholar

[29]

Y. LiY. Q. Chen and I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810-1821.  doi: 10.1016/j.camwa.2009.08.019.  Google Scholar

[30]

F. LiuP. ZhuangI. TurnerK. Burrage and V. Anh, A new fractional finite volume method for solving the fractional diffusion equation, Appl. Math. Model., 38 (2014), 3871-3878.  doi: 10.1016/j.apm.2013.10.007.  Google Scholar

[31]

C. Li and Y. Ma, Fractional dynamical system and its linearization theorem, Nonlinear Dynam., 71 (2013), 621-633.  doi: 10.1007/s11071-012-0601-1.  Google Scholar

[32]

K. S. Miller and B. Ross, An Itroduction to the Fractional Calculus and Fractional Differential Equations, , Johan Willey and Sons, Inc. New York, 1993.  Google Scholar

[33]

M. Malik and V. Kumar, Existence, stability and controllability results of coupled fractional dynamical system on time scales, Bull. Malays. Math. Sci. Soc., 43 (2020), 3369-3394.  doi: 10.1007/s40840-019-00871-0.  Google Scholar

[34]

K. M. Owolabi and Z. Hammouch, Spatiotemporal patterns in the Belousov-Zhabotinskii reaction systems with Atangana-Baleanu fractional order derivative, Physica A., 523 (2019) 1072–1090. doi: 10.1016/j.physa.2019.04.017.  Google Scholar

[35] K. B. Oldham and J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order, Academic Press, New York, 1974.   Google Scholar
[36] I. Podlubny, Fractional Differential Equations Calculus, Academic Press, New York, 1999.   Google Scholar
[37]

E. Pindza and K. M. Owolabi, Fourier spectral method for higher order space fractional reaction-diffusion equations, Commun. Nonlinear Sci. Numer. Simulat., 40 (2016), 112-128.  doi: 10.1016/j.cnsns.2016.04.020.  Google Scholar

[38]

J. SinghD. KumarD. Baleanu and S. Rathore, On the local fractional wave equation in fractal strings, Math. Methods Appl. Sci., 42 (2019), 1588-1595.  doi: 10.1002/mma.5458.  Google Scholar

[39]

K. Sayevand and K. Pichaghchi, Successive approximation: A survey on stable manifold of fractional differential systems, Fract. Calc. Appl. Anal., 18 (2015), 621-641.  doi: 10.1515/fca-2015-0038.  Google Scholar

[40]

K. Sayevand and M. Rostami, Fractional optimal control problems: optimality conditions and numerical solution, IMA J. Math. Control Info., 35 (2018), 123-148.  doi: 10.1093/imamci/dnw041.  Google Scholar

[41]

K. Sayevand and M. Rostami, General fractional variational problem depending on indefinite integrals, Numer. Algor., 72 (2016), 959-987.  doi: 10.1007/s11075-015-0076-5.  Google Scholar

[42]

J. Stoer, R. Bulirsch and R. Bartels, Introduction to Numerical Analysis, Springer, 2002. doi: 10.1007/978-0-387-21738-3.  Google Scholar

[43]

K. SayevandJ. Tenreiro Machado and V. Moradi, A new non-standard finite difference method for analysing the fractional Navier-Stokes equations, Comput. Math. Appl., 78 (2019), 1681-1694.  doi: 10.1016/j.camwa.2018.12.016.  Google Scholar

[44]

J. J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey, 1991. Google Scholar

[45]

J. SinghD. KumarD. Baleanu and S. Rathore, An efficient numerical algorithm for the fractional Drinfeld-Sokolov-Wilson equation, Appl. Math. Comput., 335 (2018), 12-24.  doi: 10.1016/j.amc.2018.04.025.  Google Scholar

[46]

V. E. Tarasov, Fractional Dynamics: Aapplications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer Science, Business Media, 2010. doi: 10.1007/978-3-642-14003-7.  Google Scholar

[47]

S. UcarE. UcarN. Ozdemir and Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative, Chaos Solition Fract., 118 (2019), 300-306.  doi: 10.1016/j.chaos.2018.12.003.  Google Scholar

[48]

V. V. Uchaikin, Fractional Derivatives for Physicists and Engineers, Vol. 2, Springer, Berlin, 2003. doi: 10.1007/978-3-642-33911-0.  Google Scholar

[49]

J. YuC. Hu and H. Jiang, $\alpha$-stability and $\alpha$-synchronization for fractional-order neural networks, Neural Netw., 35 (2012), 82-87.   Google Scholar

[50]

M. A. Zaky, A legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations, Comput. Appl. Math., 37 (2018), 3525-3538.  doi: 10.1007/s40314-017-0530-1.  Google Scholar

[51]

X. ZhangC. Zhu and Z. Wu, Solvability for a coupled system of fractional differential equations with impulses at resonance, Bound. Value Probl., 2013 (2013), 80-103.  doi: 10.1186/1687-2770-2013-80.  Google Scholar

39] for $ \alpha = 0.3 $">Figure 1.  Comparison of $ x_{1} $ for different values of $ t $ in Example 1 and corresponding to results obtained by Ref. [39] for $ \alpha = 0.3 $
39] for $ \alpha=0.3 $">Figure 2.  Comparison of $ x_{2} $ for different values of $ t $ in Example 1 and corresponding to results obtained by Ref. [39] for $ \alpha=0.3 $
39] for $ \alpha=0.7 $">Figure 3.  Comparison of $ x_{1} $ for different values of $ t $ in Example 1 and corresponding to results obtained by Ref. [39] for $ \alpha=0.7 $
39] for $ \alpha=0.7 $">Figure 4.  Comparison of $ x_{2} $ for different values of $ t $ in Example 1 and corresponding to results obtained by Ref. [39] for $ \alpha=0.7 $
39] for $ \alpha=0.2 $">Figure 5.  Comparison of $ x_{1} $ for different values of $ t $ in Example 2 and corresponding to results obtained by Ref. [39] for $ \alpha=0.2 $
39] for $ \alpha=0.2 $">Figure 6.  Comparison of $ x_{2} $ for different values of $ t $ in Example 2 and corresponding to results obtained by Ref. [39] for $ \alpha=0.2 $
39] for $ \alpha=0.2 $">Figure 7.  Comparison of $ x_{3} $ for different values of $ t $ in Example 2 and corresponding to results obtained by Ref. [39] for $ \alpha=0.2 $
39] for $ \alpha=0.9 $">Figure 8.  Comparison of $ x_{1} $ for different values of $ t $ in Example 2 and corresponding to results obtained by Ref. [39] for $ \alpha=0.9 $
39] for $ \alpha=0.9 $">Figure 9.  Comparison of $ x_{2} $ for different values of $ t $ in Example 2 and corresponding to results obtained by Ref. [39] for $ \alpha=0.9 $
39] for $ \alpha = 0.9 $">Figure 10.  Comparison of $ x_{3} $ for different values of $ t $ in Example 2 and corresponding to results obtained by Ref. [39] for $ \alpha = 0.9 $
8] for $ \alpha = 0.7 $ and $ h = 0.1 $">Figure 11.  Comparison of $ x_{1} $ for different values of $ t $ in Example 3 and corresponding to results obtained by Ref. [8] for $ \alpha = 0.7 $ and $ h = 0.1 $
8] for $ \alpha=0.7 $ and $ h=0.1 $">Figure 12.  Comparison of $ x_{2} $ for different values of $ t $ in Example 3 and corresponding to results obtained by Ref. [8] for $ \alpha=0.7 $ and $ h=0.1 $
8] for $ \alpha = 0.7 $ and $ h = 0.1 $">Figure 13.  Comparison of $ x_{3} $ for different values of $ t $ in Example 3 and corresponding to results obtained by Ref. [8] for $ \alpha = 0.7 $ and $ h = 0.1 $
Figure 14.  Projection $ \sigma_3 $ versus $ \sigma_1 $ for different values of $ \alpha $ in Example 3
Figure 15.  Projection $ \sigma_2 $ versus $ \sigma_1 $ for different values of $ \alpha $ in Example 3
Figure 16.  Projection local stable manifold for different values of $ \alpha $ in Example 3
Table 1.  Numerical results of Example 1 for different values of $ t $ and $ \alpha = 0.3 $ and $ h = 0.1 $
$ \alpha=0.3, a_{1}=0.015 $
$ x_{1} $ $ x_{2} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.00824 0.00835 0.00010 -0.00002 -0.00003 0.00000
$ 0.6 $ 0.00744 0.00753 0.00009 -0.00002 -0.00005 0.00003
$ 0.9 $ 0.00697 0.00705 0.00008 -0.00002 -0.00008 0.00006
$ 1.2 $ 0.00663 0.00676 0.00012 -0.00002 -0.00012 0.00009
$ 1.5 $ 0.00638 0.00655 0.00017 -0.00001 -0.00017 0.00015
$ 1.8 $ 0.00617 0.00637 0.00020 -0.00001 -0.0.00024 0.00022
$ 2 $ 0.00605 0.00627 0.00021 -0.00001 -0.00030 -0.00028
$ \alpha=0.3, a_{1}=0.015 $
$ x_{1} $ $ x_{2} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.00824 0.00835 0.00010 -0.00002 -0.00003 0.00000
$ 0.6 $ 0.00744 0.00753 0.00009 -0.00002 -0.00005 0.00003
$ 0.9 $ 0.00697 0.00705 0.00008 -0.00002 -0.00008 0.00006
$ 1.2 $ 0.00663 0.00676 0.00012 -0.00002 -0.00012 0.00009
$ 1.5 $ 0.00638 0.00655 0.00017 -0.00001 -0.00017 0.00015
$ 1.8 $ 0.00617 0.00637 0.00020 -0.00001 -0.0.00024 0.00022
$ 2 $ 0.00605 0.00627 0.00021 -0.00001 -0.00030 -0.00028
Table 2.  Numerical results of Example 1 for different values of $ t $ and $ \alpha=0.7 $ and $ h=0.1 $
$ \alpha=0.7 , a_{1}=0.05 $
$ x_{1} $ $ x_{2} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.03226 0.03276 0.00049 -0.00037 -0.00029 0.00007
$ 0.6 $ 0.02539 0.02596 0.00056 -0.00025 -0.00014 0.00011
$ 0.9 $ 0.02109 0.02170 0.00060 -0.00019 -0.00007 0.00011
$ 1.2 $ 0.01808 0.01884 0.00076 -0.00015 -0.00004 0.00011
$ 1.5 $ 0.01584 0.01683 0.00098 -0.00013 -0.00003 0.00010
$ 1.8 $ 0.01411 0.01523 0.00111 -0.00011 -0.00002 0.00008
$ 2 $ 0.01315 0.01432 0.00116 -0.00010 -0.00002 0.00007
$ \alpha=0.7 , a_{1}=0.05 $
$ x_{1} $ $ x_{2} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.03226 0.03276 0.00049 -0.00037 -0.00029 0.00007
$ 0.6 $ 0.02539 0.02596 0.00056 -0.00025 -0.00014 0.00011
$ 0.9 $ 0.02109 0.02170 0.00060 -0.00019 -0.00007 0.00011
$ 1.2 $ 0.01808 0.01884 0.00076 -0.00015 -0.00004 0.00011
$ 1.5 $ 0.01584 0.01683 0.00098 -0.00013 -0.00003 0.00010
$ 1.8 $ 0.01411 0.01523 0.00111 -0.00011 -0.00002 0.00008
$ 2 $ 0.01315 0.01432 0.00116 -0.00010 -0.00002 0.00007
Table 3.  Numerical results of Example 2 for different values of $ t $ and $ \alpha=0.2 $ and $ h=0.1 $
$ \alpha=0.2 , a_{1}=0.02,a_{2}=0.03 $
$ x_{1} $ $ x_{2} $ $ x_{3} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.01064 0.01075 0.0011 0.01092 0.01101 0.0009 0.00000 0.00000 0.00000
$ 0.6 $ 0.00994 0.01003 0.00009 0.00997 0.00998 0.00001 0.00000 0.00000 0.00000
$ 0.9 $ 0.00952 0.00960 0.00007 0.00943 0.00941 0.00002 0.00000 0.00000 0.00000
$ 1.2 $ 0.00923 0.00935 0.00012 0.00907 0.00907 0.00000 0.00000 0.00000 0.00000
$ 1.5 $ 0.00901 0.00917 0.00016 0.00879 0.00880 0.00001 0.00000 0.00000 0.00000
$ 1.8 $ 0.00882 0.00901 0.00018 0.00856 0.00859 0.00002 0.00000 0.00001 0.00001
$ 2 $ 0.00872 0.00891 0.00019 0.00843 0.00846 0.00002 0.00000 -0.00001 0.00001
$ \alpha=0.2 , a_{1}=0.02,a_{2}=0.03 $
$ x_{1} $ $ x_{2} $ $ x_{3} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.01064 0.01075 0.0011 0.01092 0.01101 0.0009 0.00000 0.00000 0.00000
$ 0.6 $ 0.00994 0.01003 0.00009 0.00997 0.00998 0.00001 0.00000 0.00000 0.00000
$ 0.9 $ 0.00952 0.00960 0.00007 0.00943 0.00941 0.00002 0.00000 0.00000 0.00000
$ 1.2 $ 0.00923 0.00935 0.00012 0.00907 0.00907 0.00000 0.00000 0.00000 0.00000
$ 1.5 $ 0.00901 0.00917 0.00016 0.00879 0.00880 0.00001 0.00000 0.00000 0.00000
$ 1.8 $ 0.00882 0.00901 0.00018 0.00856 0.00859 0.00002 0.00000 0.00001 0.00001
$ 2 $ 0.00872 0.00891 0.00019 0.00843 0.00846 0.00002 0.00000 -0.00001 0.00001
Table 4.  Numerical results of Example 2 for different values of $ t $ and $ \alpha = 0.9 $ and $ h = 0.1 $
$ \alpha=0.9 , a_{1}=0.02,a_{2}=0.01 $
$ x_{1} $ $ x_{2} $ $ x_{3} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.01416 0.01434 0.00018 0.00515 0.00536 0.00020 0.00000 0.00000 0.00000
$ 0.6 $ 0.01062 0.01090 0.00028 0.00305 0.00327 0.00021 0.00000 0.00000 0.00000
$ 0.9 $ 0.00817 0.00849 0.00031 0.00194 0.00211 0.00016 0.00000 0.00000 0.00000
$ 1.2 $ 0.00640 0.00675 0.00034 0.00132 0.00144 0.00012 0.00000 0.00000 0.00000
$ 1.5 $ 0.00511 0.00547 0.00036 0.00095 0.00104 0.00008 0.00000 0.00000 0.00000
$ 1.8 $ 0.00413 0.00450 0.00037 0.00072 0.00078 0.00006 0.00000 0.00000 0.00000
$ 2 $ 0.00362 0.00398 0.00036 0.00061 0.00066 0.00004 0.00000 0.00000 0.00000
$ \alpha=0.9 , a_{1}=0.02,a_{2}=0.01 $
$ x_{1} $ $ x_{2} $ $ x_{3} $
$ t $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $ Ref. [39] $ OM $ $ AE $
$ 0.3 $ 0.01416 0.01434 0.00018 0.00515 0.00536 0.00020 0.00000 0.00000 0.00000
$ 0.6 $ 0.01062 0.01090 0.00028 0.00305 0.00327 0.00021 0.00000 0.00000 0.00000
$ 0.9 $ 0.00817 0.00849 0.00031 0.00194 0.00211 0.00016 0.00000 0.00000 0.00000
$ 1.2 $ 0.00640 0.00675 0.00034 0.00132 0.00144 0.00012 0.00000 0.00000 0.00000
$ 1.5 $ 0.00511 0.00547 0.00036 0.00095 0.00104 0.00008 0.00000 0.00000 0.00000
$ 1.8 $ 0.00413 0.00450 0.00037 0.00072 0.00078 0.00006 0.00000 0.00000 0.00000
$ 2 $ 0.00362 0.00398 0.00036 0.00061 0.00066 0.00004 0.00000 0.00000 0.00000
Table 5.  Numerical results of Example 3 for different values of $ t $ and $ \alpha = 0.7 $ and $ h = 0.1 $
$ \alpha=0.7, \sigma_{1}=0.001 $
$ x_{1} $ $ x_{2} $ $ x_{3} $
$ t $ Ref. [8] $ OM $ $ AE $ Ref. [8] $ OM $ $ AE $ Ref. [8] $ OM $ $ AE $
$ 0.3 $ 0.00064 0.00065 0.00000 0.00000 0.00000 0.00000 -0.00020 0.00000 0.00000
$ 0.6 $ 0.00051 0.00052 0.00001 0.00000 0.00000 0.00000 -0.00020 0.00000 0.00000
$ 0.9 $ 0.00042 0.00043 0.00001 0.00000 0.00000 0.00000 -0.00020 0.00000 0.00000
$ 1.2 $ 0.00036 0.00037 0.00001 0.00001 0.00001 0.00000 -0.00020 0.00000 -0.00001
$ 1.5 $ 0.00031 0.00033 0.00002 0.00002 0.00003 0.00001 -0.00021 0.00000 -0.00003
$ 1.8 $ 0.00028 0.00030 0.00002 0.00005 0.00009 0.00003 -0.00022 0.00002 -0.00007
$ 2 $ 0.00026 0.00028 0.00002 0.00009 0.00016 0.00006 -0.00024 -0.00003 -0.00012
$ \alpha=0.7, \sigma_{1}=0.001 $
$ x_{1} $ $ x_{2} $ $ x_{3} $
$ t $ Ref. [8] $ OM $ $ AE $ Ref. [8] $ OM $ $ AE $ Ref. [8] $ OM $ $ AE $
$ 0.3 $ 0.00064 0.00065 0.00000 0.00000 0.00000 0.00000 -0.00020 0.00000 0.00000
$ 0.6 $ 0.00051 0.00052 0.00001 0.00000 0.00000 0.00000 -0.00020 0.00000 0.00000
$ 0.9 $ 0.00042 0.00043 0.00001 0.00000 0.00000 0.00000 -0.00020 0.00000 0.00000
$ 1.2 $ 0.00036 0.00037 0.00001 0.00001 0.00001 0.00000 -0.00020 0.00000 -0.00001
$ 1.5 $ 0.00031 0.00033 0.00002 0.00002 0.00003 0.00001 -0.00021 0.00000 -0.00003
$ 1.8 $ 0.00028 0.00030 0.00002 0.00005 0.00009 0.00003 -0.00022 0.00002 -0.00007
$ 2 $ 0.00026 0.00028 0.00002 0.00009 0.00016 0.00006 -0.00024 -0.00003 -0.00012
[1]

Edson A. Coayla-Teran, Salah-Eldin A. Mohammed, Paulo Régis C. Ruffino. Hartman-Grobman theorems along hyperbolic stationary trajectories. Discrete & Continuous Dynamical Systems, 2007, 17 (2) : 281-292. doi: 10.3934/dcds.2007.17.281

[2]

Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021182

[3]

Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021001

[4]

Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302

[5]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[6]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[7]

Xiaoming He, Marco Squassina, Wenming Zou. The Nehari manifold for fractional systems involving critical nonlinearities. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1285-1308. doi: 10.3934/cpaa.2016.15.1285

[8]

Misha Guysinsky, Boris Hasselblatt, Victoria Rayskin. Differentiability of the Hartman--Grobman linearization. Discrete & Continuous Dynamical Systems, 2003, 9 (4) : 979-984. doi: 10.3934/dcds.2003.9.979

[9]

Moulay Rchid Sidi Ammi, Ismail Jamiai. Finite difference and Legendre spectral method for a time-fractional diffusion-convection equation for image restoration. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 103-117. doi: 10.3934/dcdss.2018007

[10]

Ömer Oruç, Alaattin Esen, Fatih Bulut. A unified finite difference Chebyshev wavelet method for numerically solving time fractional Burgers' equation. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 533-542. doi: 10.3934/dcdss.2019035

[11]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[12]

Luis Barreira, Claudia Valls. Hölder Grobman-Hartman linearization. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 187-197. doi: 10.3934/dcds.2007.18.187

[13]

Nguyen Dinh Cong, Doan Thai Son, Stefan Siegmund, Hoang The Tuan. An instability theorem for nonlinear fractional differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3079-3090. doi: 10.3934/dcdsb.2017164

[14]

Roumen Anguelov, Jean M.-S. Lubuma, Meir Shillor. Dynamically consistent nonstandard finite difference schemes for continuous dynamical systems. Conference Publications, 2009, 2009 (Special) : 34-43. doi: 10.3934/proc.2009.2009.34

[15]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 709-722. doi: 10.3934/dcdss.2020039

[16]

Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021083

[17]

Venkatesan Govindaraj, Raju K. George. Controllability of fractional dynamical systems: A functional analytic approach. Mathematical Control & Related Fields, 2017, 7 (4) : 537-562. doi: 10.3934/mcrf.2017020

[18]

Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060

[19]

Hayat Zouiten, Ali Boutoulout, Delfim F. M. Torres. Regional enlarged observability of Caputo fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 1017-1029. doi: 10.3934/dcdss.2020060

[20]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (160)
  • HTML views (360)
  • Cited by (0)

Other articles
by authors

[Back to Top]