[1]
|
J. Ballani and L. Grasedyck, A projection method to solve linear systems in tensor format, Numerical Linear Algebra with Applications, 20 (2013), 27–43.
doi: 10.1002/nla.1818.
|
[2]
|
F. P. A. Beik, F. S. Movahed and S. Ahmadi-Asl, On the Krylov subspace methods based on tensor format for positive definite Sylvester tensor equations, Numerical Linear Algebra with Applications, 23 (2016), 444–466.
doi: 10.1002/nla.2033.
|
[3]
|
A. H. Bentbib, K. Jbilou and El M. Sadek, On some extended block Krylov based methods for large scale nonsymmetric Stein matrix equations, Mathematics, 5 (2017), 21.
doi: 10.3390/math5020021.
|
[4]
|
A. H. Bentbib, S. El-Halouy and El M. Sadek, Krylov subspace projection method for Sylvester tensor equation with low rank right-hand side, Numerical Algorithms, (2020), 1–20.
doi: 10.1007/s11075-020-00874-0.
|
[5]
|
M. Chen and D. Kressner, Recursive blocked algorithms for linear systems with Kronecker product structure, Numerical Algorithms, (2019), 1–18.
doi: 10.1007/s11075-019-00797-5.
|
[6]
|
D. Calvetti and L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM Journal on Matrix Analysis and Applications, 17 (1996), 165–186.
doi: 10.1137/S0895479894273687.
|
[7]
|
Z. Chen and L. Lu, A projection method and Kronecker product pre-conditioner for solving Sylvester tensor equations, Science China Mathematics, 55 (2012), 1281-1292.
doi: 10.1007/s11425-012-4363-5.
|
[8]
|
Z. Chen and L. Lu, A gradient based iterative solutions for Sylvester tensor equations, Mathematical Problems in Engineering, (2013).
doi: 10.1155/2013/819479.
|
[9]
|
F. Ding and T. Chen, Gradient based iterative algorithms for solving a class of matrix equations, IEEE Transactions on Automatic Control, 50 (2005), 1216–1221.
doi: 10.1109/TAC.2005.852558.
|
[10]
|
M. Heyouni and K. Jbilou, An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation, Electronic Transactions on Numerical Analysis, 33 (2009), 53–62.
|
[11]
|
M. Heyouni, Extended Arnoldi methods for large low-rank Sylvester matrix equations, Applied Numerical Mathematics, 60 (2010), 1171–1182.
doi: 10.1016/j.apnum.2010.07.005.
|
[12]
|
T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), 455–500.
doi: 10.1137/07070111X.
|
[13]
|
D. Kressner and C. Tobler, Krylov subspace methods for linear systems with tensor product structure, SIAM Journal on Matrix Analysis and Applications, 31 (2010), 1688–1714.
doi: 10.1137/090756843.
|
[14]
|
A. N. Langville and W. J. Stewart, A Kronecker product approximate preconditioner for SANs, Numerical Linear Algebra with Applications, 11 (2004), 723–752.
doi: 10.1002/nla.344.
|
[15]
|
N. Lee and A. Cichocki, Fundamental tensor operations for large-scale data analysis using tensor network formats, Multidimensional Systems and Signal Processing, 29 (2018), 921–960.
doi: 10.1007/s11045-017-0481-0.
|
[16]
|
T. Li, Q. W. Wang and X. F. Duan, Numerical algorithms for solving discrete Lyapunov tensor equation, Journal of Computational and Applied Mathematics, 370 (2020), 112676.
doi: 10.1016/j.cam.2019.112676.
|
[17]
|
T. Penzl, et al., A Matlab toolbox for large Lyapunov and Riccati equations, model reduction problems, and linear quadratic optimal control problems, https://www.tu-chemnitz.de/sfb393/lyapack/, (2000).
|
[18]
|
T. Stykel and V. Simoncini, Krylov subspace methods for projected Lyapunov equations, Applied Numerical Mathematics, 62 (2012), 35-50.
doi: 10.1016/j.apnum.2011.09.007.
|
[19]
|
X. Xu and W. Q. Wang, Extending BiCG and BiCR methods to solve the Stein tensor equation, Computers & Mathematics with Applications, 77 (2019), 3117–3127.
doi: 10.1016/j.camwa.2019.01.024.
|