January  2022, 15(1): 79-93. doi: 10.3934/dcdss.2021030

Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line

Department of Mathematics, Faculty of Science and Technology, Cadi Ayyad University, B.P. 549, Av. Abdelkarim Elkhattabi, Guéliz, Marrakesh, 40000, Morocco

* Corresponding author: Abderrazak Chrifi (abderrazak.chrifi@gmail.com)

Received  August 2020 Revised  January 2021 Published  January 2022 Early access  March 2021

We consider a weakly damped cubic nonlinear Schrödinger equation with Dirac interaction defect in a half line of $ \mathbb{R} $. Endowed with artificial boundary condition at the point $ x = 0 $, we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.

Citation: Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 79-93. doi: 10.3934/dcdss.2021030
References:
[1]

M. Abounouh, H. Al Moatassime and A. Chrifi, Artificial boundary condition for one-dimensional nonlinear Schrödinger problem with Dirac interaction: Existence and uniqueness results, Boundary Value Problems, 2018 (2018), 16. doi: 10.1186/s13661-018-0935-9.

[2]

M. Abounouh, H. Al Moatassime and A. Chrifi, Existence of global attractor for one-dimensional weakly damped nonlinear Schrödinger equation with Dirac interaction and artificial boundary condition in half-line, Advances in Difference Equations, 2017 (2017), 137. doi: 10.1186/s13662-017-1194-2.

[3]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., (2008), 729–796.

[4]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for the one-dimensional schrödinger equation with an exterior repulsive potential, Journal of Computational Physics, 228 (2009), 312-335.  doi: 10.1016/j.jcp.2008.09.013.

[5]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for schrödinger equations with general potentials and nonlinearities, SIAM Journal on Scientific Computing, 33 (2011), 1008-1033.  doi: 10.1137/090780535.

[6]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, (1998).

[7]

W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics, in Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 9, World Sci. Publ., Hackensack, NJ, 2007,141–239. doi: 10.1142/9789812770226_0003.

[8]

L. Burgnies, O. Vanbésien and D. Lippens, Transient analysis of ballistic transport in stublike quantum waveguides, Applied Physics Letters, (1997).

[9]

A. Chrifi, Analyse des schémas numériques et comportement asymptotique de certaines EDP dispersives, Ph.D thesis, Cadi Ayyad University, 2017.

[10]

J. F. Claerbout, Coarse grid calculation of waves in inhomogeneous media with application to delineation of complicated seismic structure, Geophysics, (1970).

[11]

J.-M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Annales de l'I.H.P. Analyse non Linéaire, 5 (1988), 365-405.  doi: 10.1016/S0294-1449(16)30343-2.

[12]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.

[13]

R. H. GoodmanP. J. Holmes and M. I. Weinstein, Strong NLS soliton–defect interactions, Phys. D, 192 (2004), 215-248.  doi: 10.1016/j.physd.2004.01.021.

[14]

E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento, 20 (1961), 454-477.  doi: 10.1007/BF02731494.

[15]

W. Kechiche, Systèmes d'équations de Schrödinger non linéaires, Ph.D thesis, University of Monastir, Tunisia, 2012.

[16]

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE electromagnetic waves series, 45, Institution of Electrical Engineers, London, 2000. doi: 10.1049/PBEW045E.

[17]

L. P. Pitaevskiĭ, Vortex lines in an imperfect bose gas, Soviet Physics JETP, 13 (1961), 451-454. 

[18]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation, Computers & Mathematics with Applications, 29 (1995), 53-76.  doi: 10.1016/0898-1221(95)00037-Y.

[19]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, 139, Springer Verlag, New York, New York, 1999.

[20]

F. D. Tappert, The Parabolic Approximation Method, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977,224–287.

show all references

References:
[1]

M. Abounouh, H. Al Moatassime and A. Chrifi, Artificial boundary condition for one-dimensional nonlinear Schrödinger problem with Dirac interaction: Existence and uniqueness results, Boundary Value Problems, 2018 (2018), 16. doi: 10.1186/s13661-018-0935-9.

[2]

M. Abounouh, H. Al Moatassime and A. Chrifi, Existence of global attractor for one-dimensional weakly damped nonlinear Schrödinger equation with Dirac interaction and artificial boundary condition in half-line, Advances in Difference Equations, 2017 (2017), 137. doi: 10.1186/s13662-017-1194-2.

[3]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., (2008), 729–796.

[4]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for the one-dimensional schrödinger equation with an exterior repulsive potential, Journal of Computational Physics, 228 (2009), 312-335.  doi: 10.1016/j.jcp.2008.09.013.

[5]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for schrödinger equations with general potentials and nonlinearities, SIAM Journal on Scientific Computing, 33 (2011), 1008-1033.  doi: 10.1137/090780535.

[6]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, (1998).

[7]

W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics, in Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 9, World Sci. Publ., Hackensack, NJ, 2007,141–239. doi: 10.1142/9789812770226_0003.

[8]

L. Burgnies, O. Vanbésien and D. Lippens, Transient analysis of ballistic transport in stublike quantum waveguides, Applied Physics Letters, (1997).

[9]

A. Chrifi, Analyse des schémas numériques et comportement asymptotique de certaines EDP dispersives, Ph.D thesis, Cadi Ayyad University, 2017.

[10]

J. F. Claerbout, Coarse grid calculation of waves in inhomogeneous media with application to delineation of complicated seismic structure, Geophysics, (1970).

[11]

J.-M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Annales de l'I.H.P. Analyse non Linéaire, 5 (1988), 365-405.  doi: 10.1016/S0294-1449(16)30343-2.

[12]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.

[13]

R. H. GoodmanP. J. Holmes and M. I. Weinstein, Strong NLS soliton–defect interactions, Phys. D, 192 (2004), 215-248.  doi: 10.1016/j.physd.2004.01.021.

[14]

E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento, 20 (1961), 454-477.  doi: 10.1007/BF02731494.

[15]

W. Kechiche, Systèmes d'équations de Schrödinger non linéaires, Ph.D thesis, University of Monastir, Tunisia, 2012.

[16]

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE electromagnetic waves series, 45, Institution of Electrical Engineers, London, 2000. doi: 10.1049/PBEW045E.

[17]

L. P. Pitaevskiĭ, Vortex lines in an imperfect bose gas, Soviet Physics JETP, 13 (1961), 451-454. 

[18]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation, Computers & Mathematics with Applications, 29 (1995), 53-76.  doi: 10.1016/0898-1221(95)00037-Y.

[19]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, 139, Springer Verlag, New York, New York, 1999.

[20]

F. D. Tappert, The Parabolic Approximation Method, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977,224–287.

[1]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[2]

Vyacheslav A. Trofimov, Evgeny M. Trykin. A new way for decreasing of amplitude of wave reflected from artificial boundary condition for 1D nonlinear Schrödinger equation. Conference Publications, 2015, 2015 (special) : 1070-1078. doi: 10.3934/proc.2015.1070

[3]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[4]

Razvan Mosincat, Haewon Yoon. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 47-80. doi: 10.3934/dcds.2020003

[5]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[6]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[7]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[8]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[9]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[10]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[11]

Masoumeh Hosseininia, Mohammad Hossein Heydari, Carlo Cattani. A wavelet method for nonlinear variable-order time fractional 2D Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2273-2295. doi: 10.3934/dcdss.2020295

[12]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[13]

Zhaowei Lou, Jianguo Si, Shimin Wang. Invariant tori for the derivative nonlinear Schrödinger equation with nonlinear term depending on spatial variable. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022064

[14]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[15]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[16]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[17]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[18]

Van Duong Dinh, Binhua Feng. On fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4565-4612. doi: 10.3934/dcds.2019188

[19]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3589-3610. doi: 10.3934/dcdss.2021021

[20]

Songbai Peng, Aliang Xia. Normalized solutions of supercritical nonlinear fractional Schrödinger equation with potential. Communications on Pure and Applied Analysis, 2021, 20 (11) : 3723-3744. doi: 10.3934/cpaa.2021128

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (286)
  • HTML views (374)
  • Cited by (0)

[Back to Top]