• Previous Article
    Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria
  • DCDS-S Home
  • This Issue
  • Next Article
    On the fuzzy stability results for fractional stochastic Volterra integral equation
doi: 10.3934/dcdss.2021030

Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line

Department of Mathematics, Faculty of Science and Technology, Cadi Ayyad University, B.P. 549, Av. Abdelkarim Elkhattabi, Guéliz, Marrakesh, 40000, Morocco

* Corresponding author: Abderrazak Chrifi (abderrazak.chrifi@gmail.com)

Received  August 2020 Revised  January 2021 Published  March 2021

We consider a weakly damped cubic nonlinear Schrödinger equation with Dirac interaction defect in a half line of $ \mathbb{R} $. Endowed with artificial boundary condition at the point $ x = 0 $, we discuss the global existence and uniqueness of solution of this equation by using Faedo–Galerkin method.

Citation: Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021030
References:
[1]

M. Abounouh, H. Al Moatassime and A. Chrifi, Artificial boundary condition for one-dimensional nonlinear Schrödinger problem with Dirac interaction: Existence and uniqueness results, Boundary Value Problems, 2018 (2018), 16. doi: 10.1186/s13661-018-0935-9.  Google Scholar

[2]

M. Abounouh, H. Al Moatassime and A. Chrifi, Existence of global attractor for one-dimensional weakly damped nonlinear Schrödinger equation with Dirac interaction and artificial boundary condition in half-line, Advances in Difference Equations, 2017 (2017), 137. doi: 10.1186/s13662-017-1194-2.  Google Scholar

[3]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., (2008), 729–796.  Google Scholar

[4]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for the one-dimensional schrödinger equation with an exterior repulsive potential, Journal of Computational Physics, 228 (2009), 312-335.  doi: 10.1016/j.jcp.2008.09.013.  Google Scholar

[5]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for schrödinger equations with general potentials and nonlinearities, SIAM Journal on Scientific Computing, 33 (2011), 1008-1033.  doi: 10.1137/090780535.  Google Scholar

[6]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, (1998). Google Scholar

[7]

W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics, in Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 9, World Sci. Publ., Hackensack, NJ, 2007,141–239. doi: 10.1142/9789812770226_0003.  Google Scholar

[8]

L. Burgnies, O. Vanbésien and D. Lippens, Transient analysis of ballistic transport in stublike quantum waveguides, Applied Physics Letters, (1997). Google Scholar

[9]

A. Chrifi, Analyse des schémas numériques et comportement asymptotique de certaines EDP dispersives, Ph.D thesis, Cadi Ayyad University, 2017. Google Scholar

[10]

J. F. Claerbout, Coarse grid calculation of waves in inhomogeneous media with application to delineation of complicated seismic structure, Geophysics, (1970). Google Scholar

[11]

J.-M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Annales de l'I.H.P. Analyse non Linéaire, 5 (1988), 365-405.  doi: 10.1016/S0294-1449(16)30343-2.  Google Scholar

[12]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[13]

R. H. GoodmanP. J. Holmes and M. I. Weinstein, Strong NLS soliton–defect interactions, Phys. D, 192 (2004), 215-248.  doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[14]

E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento, 20 (1961), 454-477.  doi: 10.1007/BF02731494.  Google Scholar

[15]

W. Kechiche, Systèmes d'équations de Schrödinger non linéaires, Ph.D thesis, University of Monastir, Tunisia, 2012. Google Scholar

[16]

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE electromagnetic waves series, 45, Institution of Electrical Engineers, London, 2000. doi: 10.1049/PBEW045E.  Google Scholar

[17]

L. P. Pitaevskiĭ, Vortex lines in an imperfect bose gas, Soviet Physics JETP, 13 (1961), 451-454.   Google Scholar

[18]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation, Computers & Mathematics with Applications, 29 (1995), 53-76.  doi: 10.1016/0898-1221(95)00037-Y.  Google Scholar

[19]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, 139, Springer Verlag, New York, New York, 1999.  Google Scholar

[20]

F. D. Tappert, The Parabolic Approximation Method, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977,224–287.  Google Scholar

show all references

References:
[1]

M. Abounouh, H. Al Moatassime and A. Chrifi, Artificial boundary condition for one-dimensional nonlinear Schrödinger problem with Dirac interaction: Existence and uniqueness results, Boundary Value Problems, 2018 (2018), 16. doi: 10.1186/s13661-018-0935-9.  Google Scholar

[2]

M. Abounouh, H. Al Moatassime and A. Chrifi, Existence of global attractor for one-dimensional weakly damped nonlinear Schrödinger equation with Dirac interaction and artificial boundary condition in half-line, Advances in Difference Equations, 2017 (2017), 137. doi: 10.1186/s13662-017-1194-2.  Google Scholar

[3]

X. Antoine, A. Arnold, C. Besse, M. Ehrhardt and A. Schädle, A review of transparent and artificial boundary conditions techniques for linear and nonlinear Schrödinger equations, Commun. Comput. Phys., (2008), 729–796.  Google Scholar

[4]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for the one-dimensional schrödinger equation with an exterior repulsive potential, Journal of Computational Physics, 228 (2009), 312-335.  doi: 10.1016/j.jcp.2008.09.013.  Google Scholar

[5]

X. AntoineC. Besse and P. Klein, Absorbing boundary conditions for schrödinger equations with general potentials and nonlinearities, SIAM Journal on Scientific Computing, 33 (2011), 1008-1033.  doi: 10.1137/090780535.  Google Scholar

[6]

A. Arnold, Numerically absorbing boundary conditions for quantum evolution equations, VLSI Design, (1998). Google Scholar

[7]

W. Bao, The nonlinear Schrödinger equation and applications in Bose-Einstein condensation and plasma physics, in Dynamics in Models of Coarsening, Coagulation, Condensation and Quantization, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 9, World Sci. Publ., Hackensack, NJ, 2007,141–239. doi: 10.1142/9789812770226_0003.  Google Scholar

[8]

L. Burgnies, O. Vanbésien and D. Lippens, Transient analysis of ballistic transport in stublike quantum waveguides, Applied Physics Letters, (1997). Google Scholar

[9]

A. Chrifi, Analyse des schémas numériques et comportement asymptotique de certaines EDP dispersives, Ph.D thesis, Cadi Ayyad University, 2017. Google Scholar

[10]

J. F. Claerbout, Coarse grid calculation of waves in inhomogeneous media with application to delineation of complicated seismic structure, Geophysics, (1970). Google Scholar

[11]

J.-M. Ghidaglia, Finite dimensional behavior for weakly damped driven Schrödinger equations, Annales de l'I.H.P. Analyse non Linéaire, 5 (1988), 365-405.  doi: 10.1016/S0294-1449(16)30343-2.  Google Scholar

[12]

R. T. Glassey, On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., 18 (1977), 1794-1797.  doi: 10.1063/1.523491.  Google Scholar

[13]

R. H. GoodmanP. J. Holmes and M. I. Weinstein, Strong NLS soliton–defect interactions, Phys. D, 192 (2004), 215-248.  doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[14]

E. P. Gross, Structure of a quantized vortex in boson systems, Nuovo Cimento, 20 (1961), 454-477.  doi: 10.1007/BF02731494.  Google Scholar

[15]

W. Kechiche, Systèmes d'équations de Schrödinger non linéaires, Ph.D thesis, University of Monastir, Tunisia, 2012. Google Scholar

[16]

M. Levy, Parabolic Equation Methods for Electromagnetic Wave Propagation, IEE electromagnetic waves series, 45, Institution of Electrical Engineers, London, 2000. doi: 10.1049/PBEW045E.  Google Scholar

[17]

L. P. Pitaevskiĭ, Vortex lines in an imperfect bose gas, Soviet Physics JETP, 13 (1961), 451-454.   Google Scholar

[18]

F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical solution of Fresnel's equation, Computers & Mathematics with Applications, 29 (1995), 53-76.  doi: 10.1016/0898-1221(95)00037-Y.  Google Scholar

[19]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Applied Mathematical Sciences, 139, Springer Verlag, New York, New York, 1999.  Google Scholar

[20]

F. D. Tappert, The Parabolic Approximation Method, Springer Berlin Heidelberg, Berlin, Heidelberg, 1977,224–287.  Google Scholar

[1]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[2]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[3]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[4]

Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021031

[5]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[6]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[7]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[8]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[9]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[10]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021038

[11]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[12]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[13]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[14]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[15]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[16]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[17]

Mikhail Dokuchaev, Guanglu Zhou, Song Wang. A modification of Galerkin's method for option pricing. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021077

[18]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[19]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[20]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

2019 Impact Factor: 1.233

Article outline

[Back to Top]