doi: 10.3934/dcdss.2021031

Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point

Laboratoire de recherche: Analyse, Probabilité et Fractales, Faculté des Sciences de Monastir, Av. de l'environement, 5000 Monastir, Tunisie

Received  December 2019 Revised  January 2021 Published  March 2021

We consider the nonlinear Schrödinger equation in dimension one with a nonlinearity concentrated in one point. We prove that this equation provides an infinite dimensional dynamical system. We also study the asymptotic behavior of the dynamics. We prove the existence of a global attractor for the system.

Citation: Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021031
References:
[1]

R. Adami and A. Teta, A simple model of concentrated nonlinearity: Operator theory, Mathematical Results in Quantum Mechanics, 108 (1999), 183-189.  doi: 10.1007/978-3-0348-8745-8_13.  Google Scholar

[2]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$, Appl. Math. Lett., 12 (1999), 45-48.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

O. M. Bulashenko, V. A. Kochelap and L. L. Bonilla, Coherent patterns and self-indiced diffraction of electrons on a thin nonlinear layer, Phys.Rev B, 54 (1996), 1537–1540. arXiv: cond-mat/9604164. doi: 10.1103/PhysRevB.54.1537.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, , Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[6]

R. H. Goodman, P. J. Holmes and M. I. Wenstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. arXiv: nlin/0203057 doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Appl. Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.  Google Scholar

[8]

J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 123522, 20 pp. arXiv: 1510.03491 doi: 10.1016/j.jmaa.2019.123522.  Google Scholar

[9]

G. Jona-Lasinio, C. Presilla and J. Sjöstrand, On Schrödinger equations with concentrated nonlinearities, Ann. Phys., 240 (1995), 1–21. arXiv: cond-mat/9501037 doi: 10.1006/aphy.1995.1040.  Google Scholar

[10]

W. Kechiche, Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect, Commun. Pure Appl. Anal., 16 (2017), 1233-1252.  doi: 10.3934/cpaa.2017060.  Google Scholar

[11]

W. Kechiche, Systemes d'Equations de Schrödinger non Lin aires, Ph. D thesis, Université de Monastir et Universit'e de Picardie Jules Vernes, 2012 (To appear). Google Scholar

[12]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^{N}, \; N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[13]

K. Lu and B. Wang, Global attractor for the Klein-Gordon-Schrödinger equations in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[14]

B. A. Malomed and M. Ya. Azbel, Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 47 (1993), 10402. doi: 10.1103/PhysRevB.47.10402.  Google Scholar

[15]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equation in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[16]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 1369–1393. https://pdfs.semanticscholar.org/cfbf/a1fb70b618f40193593a93d1b39f551a772c.pdf doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[17]

F. Nier, The dynamics of some quantum open systems with short-rang nonlinearities, Nonlinearity, 11 (1998), 1127-1172.  doi: 10.1088/0951-7715/11/4/022.  Google Scholar

[18]

G. Raugel, Global attractor in partial differential equations, Handbook of Dynamical Systems, 2 (2002), 885-982.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[19]

R. Rosa, The global attractor of weakly damped forced Korteweg-De Vries equation in $H^1(\mathbb R)$, Mat. Contemp. 19 (2000), 129–152. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.421&rep=rep1&type=pdf  Google Scholar

[20]

C. Sulem and P.-L. Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlinear Analysis, 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.  Google Scholar

[21]

R. Temam, Infinite-Dimentional Dynamical Systems in Mecanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

show all references

References:
[1]

R. Adami and A. Teta, A simple model of concentrated nonlinearity: Operator theory, Mathematical Results in Quantum Mechanics, 108 (1999), 183-189.  doi: 10.1007/978-3-0348-8745-8_13.  Google Scholar

[2]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$, Appl. Math. Lett., 12 (1999), 45-48.  doi: 10.1016/S0893-9659(98)00170-0.  Google Scholar

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.  Google Scholar

[4]

O. M. Bulashenko, V. A. Kochelap and L. L. Bonilla, Coherent patterns and self-indiced diffraction of electrons on a thin nonlinear layer, Phys.Rev B, 54 (1996), 1537–1540. arXiv: cond-mat/9604164. doi: 10.1103/PhysRevB.54.1537.  Google Scholar

[5]

T. Cazenave, Semilinear Schrödinger Equations, , Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.  Google Scholar

[6]

R. H. Goodman, P. J. Holmes and M. I. Wenstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. arXiv: nlin/0203057 doi: 10.1016/j.physd.2004.01.021.  Google Scholar

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Appl. Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.  Google Scholar

[8]

J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 123522, 20 pp. arXiv: 1510.03491 doi: 10.1016/j.jmaa.2019.123522.  Google Scholar

[9]

G. Jona-Lasinio, C. Presilla and J. Sjöstrand, On Schrödinger equations with concentrated nonlinearities, Ann. Phys., 240 (1995), 1–21. arXiv: cond-mat/9501037 doi: 10.1006/aphy.1995.1040.  Google Scholar

[10]

W. Kechiche, Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect, Commun. Pure Appl. Anal., 16 (2017), 1233-1252.  doi: 10.3934/cpaa.2017060.  Google Scholar

[11]

W. Kechiche, Systemes d'Equations de Schrödinger non Lin aires, Ph. D thesis, Université de Monastir et Universit'e de Picardie Jules Vernes, 2012 (To appear). Google Scholar

[12]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^{N}, \; N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357-369.  doi: 10.1007/BF01261181.  Google Scholar

[13]

K. Lu and B. Wang, Global attractor for the Klein-Gordon-Schrödinger equations in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.  Google Scholar

[14]

B. A. Malomed and M. Ya. Azbel, Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 47 (1993), 10402. doi: 10.1103/PhysRevB.47.10402.  Google Scholar

[15]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equation in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.  Google Scholar

[16]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 1369–1393. https://pdfs.semanticscholar.org/cfbf/a1fb70b618f40193593a93d1b39f551a772c.pdf doi: 10.1088/0951-7715/11/5/012.  Google Scholar

[17]

F. Nier, The dynamics of some quantum open systems with short-rang nonlinearities, Nonlinearity, 11 (1998), 1127-1172.  doi: 10.1088/0951-7715/11/4/022.  Google Scholar

[18]

G. Raugel, Global attractor in partial differential equations, Handbook of Dynamical Systems, 2 (2002), 885-982.  doi: 10.1016/S1874-575X(02)80038-8.  Google Scholar

[19]

R. Rosa, The global attractor of weakly damped forced Korteweg-De Vries equation in $H^1(\mathbb R)$, Mat. Contemp. 19 (2000), 129–152. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.421&rep=rep1&type=pdf  Google Scholar

[20]

C. Sulem and P.-L. Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlinear Analysis, 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.  Google Scholar

[21]

R. Temam, Infinite-Dimentional Dynamical Systems in Mecanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.  Google Scholar

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.  Google Scholar

[1]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[2]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[3]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[4]

Amira Khelifa, Yacine Halim. Global behavior of P-dimensional difference equations system. Electronic Research Archive, , () : -. doi: 10.3934/era.2021029

[5]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[6]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[7]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[8]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021028

[9]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[10]

Yosra Soussi. Stable recovery of a non-compactly supported coefficient of a Schrödinger equation on an infinite waveguide. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021022

[11]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[12]

Ying Yang. Global classical solutions to two-dimensional chemotaxis-shallow water system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2625-2643. doi: 10.3934/dcdsb.2020198

[13]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[14]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[16]

Xuemin Deng, Yuelong Xiao, Aibin Zang. Global well-posedness of the $ n $-dimensional hyper-dissipative Boussinesq system without thermal diffusivity. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1229-1240. doi: 10.3934/cpaa.2021018

[17]

Pengfei Wang, Mengyi Zhang, Huan Su. Input-to-state stability of infinite-dimensional stochastic nonlinear systems. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021066

[18]

Jiacheng Wang, Peng-Fei Yao. On the attractor for a semilinear wave equation with variable coefficients and nonlinear boundary dissipation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021043

[19]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

[20]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (28)
  • HTML views (46)
  • Cited by (0)

Other articles
by authors

[Back to Top]