August  2021, 14(8): 3027-3042. doi: 10.3934/dcdss.2021031

Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point

Laboratoire de recherche: Analyse, Probabilité et Fractales, Faculté des Sciences de Monastir, Av. de l'environement, 5000 Monastir, Tunisie

Received  December 2019 Revised  January 2021 Published  August 2021 Early access  March 2021

We consider the nonlinear Schrödinger equation in dimension one with a nonlinearity concentrated in one point. We prove that this equation provides an infinite dimensional dynamical system. We also study the asymptotic behavior of the dynamics. We prove the existence of a global attractor for the system.

Citation: Wided Kechiche. Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 3027-3042. doi: 10.3934/dcdss.2021031
References:
[1]

R. Adami and A. Teta, A simple model of concentrated nonlinearity: Operator theory, Mathematical Results in Quantum Mechanics, 108 (1999), 183-189.  doi: 10.1007/978-3-0348-8745-8_13.

[2]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$, Appl. Math. Lett., 12 (1999), 45-48.  doi: 10.1016/S0893-9659(98)00170-0.

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[4]

O. M. Bulashenko, V. A. Kochelap and L. L. Bonilla, Coherent patterns and self-indiced diffraction of electrons on a thin nonlinear layer, Phys.Rev B, 54 (1996), 1537–1540. arXiv: cond-mat/9604164. doi: 10.1103/PhysRevB.54.1537.

[5]

T. Cazenave, Semilinear Schrödinger Equations, , Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[6]

R. H. Goodman, P. J. Holmes and M. I. Wenstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. arXiv: nlin/0203057 doi: 10.1016/j.physd.2004.01.021.

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Appl. Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.

[8]

J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 123522, 20 pp. arXiv: 1510.03491 doi: 10.1016/j.jmaa.2019.123522.

[9]

G. Jona-Lasinio, C. Presilla and J. Sjöstrand, On Schrödinger equations with concentrated nonlinearities, Ann. Phys., 240 (1995), 1–21. arXiv: cond-mat/9501037 doi: 10.1006/aphy.1995.1040.

[10]

W. Kechiche, Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect, Commun. Pure Appl. Anal., 16 (2017), 1233-1252.  doi: 10.3934/cpaa.2017060.

[11]

W. Kechiche, Systemes d'Equations de Schrödinger non Lin aires, Ph. D thesis, Université de Monastir et Universit'e de Picardie Jules Vernes, 2012 (To appear).

[12]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^{N}, \; N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357-369.  doi: 10.1007/BF01261181.

[13]

K. Lu and B. Wang, Global attractor for the Klein-Gordon-Schrödinger equations in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.

[14]

B. A. Malomed and M. Ya. Azbel, Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 47 (1993), 10402. doi: 10.1103/PhysRevB.47.10402.

[15]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equation in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.

[16]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 1369–1393. https://pdfs.semanticscholar.org/cfbf/a1fb70b618f40193593a93d1b39f551a772c.pdf doi: 10.1088/0951-7715/11/5/012.

[17]

F. Nier, The dynamics of some quantum open systems with short-rang nonlinearities, Nonlinearity, 11 (1998), 1127-1172.  doi: 10.1088/0951-7715/11/4/022.

[18]

G. Raugel, Global attractor in partial differential equations, Handbook of Dynamical Systems, 2 (2002), 885-982.  doi: 10.1016/S1874-575X(02)80038-8.

[19]

R. Rosa, The global attractor of weakly damped forced Korteweg-De Vries equation in $H^1(\mathbb R)$, Mat. Contemp. 19 (2000), 129–152. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.421&rep=rep1&type=pdf

[20]

C. Sulem and P.-L. Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlinear Analysis, 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.

[21]

R. Temam, Infinite-Dimentional Dynamical Systems in Mecanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.

show all references

References:
[1]

R. Adami and A. Teta, A simple model of concentrated nonlinearity: Operator theory, Mathematical Results in Quantum Mechanics, 108 (1999), 183-189.  doi: 10.1007/978-3-0348-8745-8_13.

[2]

N. Akroune, Regularity of the attractor for a weakly damped nonlinear Schrödinger equation on $\mathbb R$, Appl. Math. Lett., 12 (1999), 45-48.  doi: 10.1016/S0893-9659(98)00170-0.

[3]

J. M. Ball, Global attractors for damped semilinear wave equations, Discrete Contin. Dyn. Syst., 10 (2004), 31-52.  doi: 10.3934/dcds.2004.10.31.

[4]

O. M. Bulashenko, V. A. Kochelap and L. L. Bonilla, Coherent patterns and self-indiced diffraction of electrons on a thin nonlinear layer, Phys.Rev B, 54 (1996), 1537–1540. arXiv: cond-mat/9604164. doi: 10.1103/PhysRevB.54.1537.

[5]

T. Cazenave, Semilinear Schrödinger Equations, , Courant Lecture Notes in Mathematics, 10. New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2003. doi: 10.1090/cln/010.

[6]

R. H. Goodman, P. J. Holmes and M. I. Wenstein, Strong NLS soliton-defect interactions, Physica D, 192 (2004), 215–248. arXiv: nlin/0203057 doi: 10.1016/j.physd.2004.01.021.

[7]

O. Goubet, Regularity of the attractor for the weakly damped nonlinear Schrödinger equations, Appl. Anal., 60 (1996), 99-119.  doi: 10.1080/00036819608840420.

[8]

J. Holmer and C. Liu, Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity I: Basic theory, J. Math. Anal. Appl., 483 (2020), 123522, 20 pp. arXiv: 1510.03491 doi: 10.1016/j.jmaa.2019.123522.

[9]

G. Jona-Lasinio, C. Presilla and J. Sjöstrand, On Schrödinger equations with concentrated nonlinearities, Ann. Phys., 240 (1995), 1–21. arXiv: cond-mat/9501037 doi: 10.1006/aphy.1995.1040.

[10]

W. Kechiche, Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect, Commun. Pure Appl. Anal., 16 (2017), 1233-1252.  doi: 10.3934/cpaa.2017060.

[11]

W. Kechiche, Systemes d'Equations de Schrödinger non Lin aires, Ph. D thesis, Université de Monastir et Universit'e de Picardie Jules Vernes, 2012 (To appear).

[12]

P. Laurençot, Long-time behavior for weakly damped driven nonlinear Schrödinger equation in $\mathbb R^{N}, \; N\leq 3$, NoDEA Nonlinear Differential Equations Appl., 2 (1995), 357-369.  doi: 10.1007/BF01261181.

[13]

K. Lu and B. Wang, Global attractor for the Klein-Gordon-Schrödinger equations in unbounded domains, J. Differential Equations, 170 (2001), 281-316.  doi: 10.1006/jdeq.2000.3827.

[14]

B. A. Malomed and M. Ya. Azbel, Modulational instability of a wave scattered by a nonlinear center, Phys. Rev. B, 47 (1993), 10402. doi: 10.1103/PhysRevB.47.10402.

[15]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equation in bounded and unbounded domains, Handbook of Differential Equations: Evolutionary Equations, 4 (2008), 103-200.  doi: 10.1016/S1874-5717(08)00003-0.

[16]

I. Moise, R. Rosa and X. Wang, Attractors for noncompact semigroups via energy equations, Nonlinearity, 11 (1998), 1369–1393. https://pdfs.semanticscholar.org/cfbf/a1fb70b618f40193593a93d1b39f551a772c.pdf doi: 10.1088/0951-7715/11/5/012.

[17]

F. Nier, The dynamics of some quantum open systems with short-rang nonlinearities, Nonlinearity, 11 (1998), 1127-1172.  doi: 10.1088/0951-7715/11/4/022.

[18]

G. Raugel, Global attractor in partial differential equations, Handbook of Dynamical Systems, 2 (2002), 885-982.  doi: 10.1016/S1874-575X(02)80038-8.

[19]

R. Rosa, The global attractor of weakly damped forced Korteweg-De Vries equation in $H^1(\mathbb R)$, Mat. Contemp. 19 (2000), 129–152. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.407.421&rep=rep1&type=pdf

[20]

C. Sulem and P.-L. Sulem, Focusing nonlinear Schrödinger equation and wave-packet collapse, Nonlinear Analysis, 30 (1997), 833-844.  doi: 10.1016/S0362-546X(96)00168-X.

[21]

R. Temam, Infinite-Dimentional Dynamical Systems in Mecanics and Physics, Applied Mathematical Sciences, 68. Springer-Verlag, New York, 1997. doi: 10.1007/978-1-4612-0645-3.

[22]

X. Wang, An energy equation for the weakly damped driven nonlinear Schrödinger equations and its application to their attractors, Physica D, 88 (1995), 167-175.  doi: 10.1016/0167-2789(95)00196-B.

[1]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[2]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations and Control Theory, 2022, 11 (2) : 559-581. doi: 10.3934/eect.2021013

[3]

Brahim Alouini. Finite dimensional global attractor for a damped fractional anisotropic Schrödinger type equation with harmonic potential. Communications on Pure and Applied Analysis, 2020, 19 (9) : 4545-4573. doi: 10.3934/cpaa.2020206

[4]

Brahim Alouini. Global attractor for a one dimensional weakly damped half-wave equation. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2655-2670. doi: 10.3934/dcdss.2020410

[5]

Rolci Cipolatti, Otared Kavian. On a nonlinear Schrödinger equation modelling ultra-short laser pulses with a large noncompact global attractor. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 121-132. doi: 10.3934/dcds.2007.17.121

[6]

Olivier Goubet, Ezzeddine Zahrouni. Global attractor for damped forced nonlinear logarithmic Schrödinger equations. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2933-2946. doi: 10.3934/dcdss.2020393

[7]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[8]

Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036

[9]

Takahisa Inui. Global dynamics of solutions with group invariance for the nonlinear schrödinger equation. Communications on Pure and Applied Analysis, 2017, 16 (2) : 557-590. doi: 10.3934/cpaa.2017028

[10]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[11]

Jason Murphy, Fabio Pusateri. Almost global existence for cubic nonlinear Schrödinger equations in one space dimension. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 2077-2102. doi: 10.3934/dcds.2017089

[12]

Chunxiao Guo, Fan Cui, Yongqian Han. Global existence and uniqueness of the solution for the fractional Schrödinger-KdV-Burgers system. Discrete and Continuous Dynamical Systems - S, 2016, 9 (6) : 1687-1699. doi: 10.3934/dcdss.2016070

[13]

Xuecheng Wang. Global solution for the $3D$ quadratic Schrödinger equation of $Q(u, \bar{u}$) type. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5037-5048. doi: 10.3934/dcds.2017217

[14]

Xiaoqiang Dai, Wenke Li. Non-global solution for visco-elastic dynamical system with nonlinear source term in control problem. Electronic Research Archive, 2021, 29 (6) : 4087-4098. doi: 10.3934/era.2021073

[15]

Tomás Caraballo, Marta Herrera-Cobos, Pedro Marín-Rubio. Global attractor for a nonlocal p-Laplacian equation without uniqueness of solution. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1801-1816. doi: 10.3934/dcdsb.2017107

[16]

Liren Lin, Tai-Peng Tsai. Mixed dimensional infinite soliton trains for nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 295-336. doi: 10.3934/dcds.2017013

[17]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[18]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[19]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete and Continuous Dynamical Systems - S, 2022, 15 (1) : 79-93. doi: 10.3934/dcdss.2021030

[20]

Francesca Bucci, Igor Chueshov, Irena Lasiecka. Global attractor for a composite system of nonlinear wave and plate equations. Communications on Pure and Applied Analysis, 2007, 6 (1) : 113-140. doi: 10.3934/cpaa.2007.6.113

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (197)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]