doi: 10.3934/dcdss.2021032

Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term

1. 

Université de Sfax, Faculté des Sciences de Sfax, Département de Mathematiques, BP 1171, Sfax 3000, Tunisia

2. 

Université Sorbonne Paris Nord, Institut Galilée, Laboratoire Analyse, Géométrie et Applications, CNRS UMR 7539, 99 avenue J.B. Clément, 93430 Villetaneuse, France

Dedicated to the memory of Ezzeddine Zahrouni

Received  September 2020 Revised  February 2021 Published  March 2021

We consider in this paper a perturbation of the standard semilinear heat equation by a term involving the space derivative and a non-local term. In some earlier work [1], we constructed a blow-up solution for that equation, and showed that it blows up (at least) at the origin. We also derived the so called "intermediate blow-up profile". In this paper, we prove the single point blow-up property and determine the final blow-up profile.

Citation: Bouthaina Abdelhedi, Hatem Zaag. Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021032
References:
[1]

B. Abdelhedi and H. Zaag, Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term, J. Differential Equations, 272 (2021), 1-45.  doi: 10.1016/j.jde.2020.09.020.  Google Scholar

[2]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser.(2), 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[3]

M. Berger and R. V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., 41 (1988), 841-863.  doi: 10.1002/cpa.3160410606.  Google Scholar

[4]

J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.  doi: 10.1088/0951-7715/7/2/011.  Google Scholar

[5]

M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.  doi: 10.1137/0520060.  Google Scholar

[6]

G. K. Duong and H. Zaag, Profile of touch-down solution to a nonlocal MEMS model, Math. Models Methods Appl. Sci., 29 (2019), 1279-1348.  doi: 10.1142/S0218202519500222.  Google Scholar

[7]

S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of $u_t-\Delta u = u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.  doi: 10.1002/cpa.3160450703.  Google Scholar

[8]

S. Filippas and W. X. Liu., On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 313-344.  doi: 10.1016/S0294-1449(16)30215-3.  Google Scholar

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[10]

V. A. Galaktionov and J. L. Vázquez, Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.  doi: 10.1137/0524071.  Google Scholar

[11]

V. A. Galaktionov and J. L. Vázquez, Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations, J. Differential Equations, 127 (1996), 1-40.  doi: 10.1006/jdeq.1996.0059.  Google Scholar

[12]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.  Google Scholar

[13]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[14]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.  Google Scholar

[15]

M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997.   Google Scholar

[16]

M. A. Herrero and J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 381-450.   Google Scholar

[17]

M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 131-189.  doi: 10.1016/S0294-1449(16)30217-7.  Google Scholar

[18]

M. A. Herrero and J. J. L. Velázquez, Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 201-203.   Google Scholar

[19]

F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.  Google Scholar

[20]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u +|u|^{p-1} u$, Duke Math. J., 86 (1997), 143-195.   Google Scholar

[21]

F. Merle and H. Zaag, Stabilité du profil à l'explosion pour les équations du type $u_ t = \Delta u+\vert u\vert ^ {p-1}u$, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 345-350.   Google Scholar

[22]

V. T. Nguyen, Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time, Phys. D, 339 (2017), 49-65.  doi: 10.1016/j.physd.2016.09.002.  Google Scholar

[23]

V. T. Nguyen and H. Zaag, Blow-up results for a strongly perturbed semilinear heat equation: Theoretical analysis and numerical method, Anal. PDE, 9 (2016), 229-257.  doi: 10.2140/apde.2016.9.229.  Google Scholar

[24]

P. Quittner and P. Souplet, Superlinear parabolic Problems. Blow-up, Global Existence and Steady States, Second Edition. Birkhäuser Advanced Texts, 2019. doi: 10.1007/978-3-030-18222-9.  Google Scholar

[25]

P. SoupletS. Tayachi and F. B. Weissler, Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 45 (1996), 655-682.  doi: 10.1512/iumj.1996.45.1197.  Google Scholar

[26]

S. Tayachi and H. Zaag, Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Amer. Math. Soc., 371 (2019), 5899-5972.  doi: 10.1090/tran/7631.  Google Scholar

[27]

S. Tayachi and H. Zaag, Existence and stability of a blow-up solution with a new prescribed behavior for a heat equation with a critical nonlinear gradient term, Actes du Colloque EDP-Normandie, Le Havre, 21–22, octobre 2015. Google Scholar

[28]

F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[29]

H. Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 581-622.  doi: 10.1016/S0294-1449(98)80002-4.  Google Scholar

show all references

References:
[1]

B. Abdelhedi and H. Zaag, Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term, J. Differential Equations, 272 (2021), 1-45.  doi: 10.1016/j.jde.2020.09.020.  Google Scholar

[2]

J. M. Ball, Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser.(2), 28 (1977), 473-486.  doi: 10.1093/qmath/28.4.473.  Google Scholar

[3]

M. Berger and R. V. Kohn, A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., 41 (1988), 841-863.  doi: 10.1002/cpa.3160410606.  Google Scholar

[4]

J. Bricmont and A. Kupiainen, Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.  doi: 10.1088/0951-7715/7/2/011.  Google Scholar

[5]

M. Chipot and F. B. Weissler, Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.  doi: 10.1137/0520060.  Google Scholar

[6]

G. K. Duong and H. Zaag, Profile of touch-down solution to a nonlocal MEMS model, Math. Models Methods Appl. Sci., 29 (2019), 1279-1348.  doi: 10.1142/S0218202519500222.  Google Scholar

[7]

S. Filippas and R. V. Kohn, Refined asymptotics for the blow-up of $u_t-\Delta u = u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.  doi: 10.1002/cpa.3160450703.  Google Scholar

[8]

S. Filippas and W. X. Liu., On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 313-344.  doi: 10.1016/S0294-1449(16)30215-3.  Google Scholar

[9]

H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.   Google Scholar

[10]

V. A. Galaktionov and J. L. Vázquez, Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.  doi: 10.1137/0524071.  Google Scholar

[11]

V. A. Galaktionov and J. L. Vázquez, Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations, J. Differential Equations, 127 (1996), 1-40.  doi: 10.1006/jdeq.1996.0059.  Google Scholar

[12]

Y. Giga and R. V. Kohn, Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.  doi: 10.1002/cpa.3160380304.  Google Scholar

[13]

Y. Giga and R. V. Kohn, Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.  doi: 10.1512/iumj.1987.36.36001.  Google Scholar

[14]

Y. Giga and R. V. Kohn, Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.  doi: 10.1002/cpa.3160420607.  Google Scholar

[15]

M. A. Herrero and J. J. L. Velázquez, Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997.   Google Scholar

[16]

M. A. Herrero and J. J. L. Velázquez, Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 381-450.   Google Scholar

[17]

M. A. Herrero and J. J. L. Velázquez, Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 131-189.  doi: 10.1016/S0294-1449(16)30217-7.  Google Scholar

[18]

M. A. Herrero and J. J. L. Velázquez, Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 201-203.   Google Scholar

[19]

F. Merle, Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45 (1992), 263-300.  doi: 10.1002/cpa.3160450303.  Google Scholar

[20]

F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type $u_t = \Delta u +|u|^{p-1} u$, Duke Math. J., 86 (1997), 143-195.   Google Scholar

[21]

F. Merle and H. Zaag, Stabilité du profil à l'explosion pour les équations du type $u_ t = \Delta u+\vert u\vert ^ {p-1}u$, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 345-350.   Google Scholar

[22]

V. T. Nguyen, Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time, Phys. D, 339 (2017), 49-65.  doi: 10.1016/j.physd.2016.09.002.  Google Scholar

[23]

V. T. Nguyen and H. Zaag, Blow-up results for a strongly perturbed semilinear heat equation: Theoretical analysis and numerical method, Anal. PDE, 9 (2016), 229-257.  doi: 10.2140/apde.2016.9.229.  Google Scholar

[24]

P. Quittner and P. Souplet, Superlinear parabolic Problems. Blow-up, Global Existence and Steady States, Second Edition. Birkhäuser Advanced Texts, 2019. doi: 10.1007/978-3-030-18222-9.  Google Scholar

[25]

P. SoupletS. Tayachi and F. B. Weissler, Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 45 (1996), 655-682.  doi: 10.1512/iumj.1996.45.1197.  Google Scholar

[26]

S. Tayachi and H. Zaag, Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Amer. Math. Soc., 371 (2019), 5899-5972.  doi: 10.1090/tran/7631.  Google Scholar

[27]

S. Tayachi and H. Zaag, Existence and stability of a blow-up solution with a new prescribed behavior for a heat equation with a critical nonlinear gradient term, Actes du Colloque EDP-Normandie, Le Havre, 21–22, octobre 2015. Google Scholar

[28]

F. B. Weissler, Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.  doi: 10.1016/0022-0396(84)90081-0.  Google Scholar

[29]

H. Zaag, Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 581-622.  doi: 10.1016/S0294-1449(98)80002-4.  Google Scholar

[1]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[2]

Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194

[3]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[4]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[5]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[6]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[7]

Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206

[8]

Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021017

[9]

Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149

[10]

Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027

[11]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

[12]

Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021015

[13]

Massimo Barnabei, Alessandro Borri, Andrea De Gaetano, Costanzo Manes, Pasquale Palumbo, Jorge Guerra Pires. A short-term food intake model involving glucose, insulin and ghrelin. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021114

[14]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[15]

Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020127

[16]

Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002

[17]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129

[18]

Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016

[19]

Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059

[20]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (24)
  • HTML views (41)
  • Cited by (0)

Other articles
by authors

[Back to Top]