-
Previous Article
A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion
- DCDS-S Home
- This Issue
-
Next Article
Positive solutions of the discrete Robin problem with $ \phi $-Laplacian
Single point blow-up and final profile for a perturbed nonlinear heat equation with a gradient and a non-local term
1. | Université de Sfax, Faculté des Sciences de Sfax, Département de Mathematiques, BP 1171, Sfax 3000, Tunisia |
2. | Université Sorbonne Paris Nord, Institut Galilée, Laboratoire Analyse, Géométrie et Applications, CNRS UMR 7539, 99 avenue J.B. Clément, 93430 Villetaneuse, France |
We consider in this paper a perturbation of the standard semilinear heat equation by a term involving the space derivative and a non-local term. In some earlier work [
References:
[1] |
B. Abdelhedi and H. Zaag,
Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term, J. Differential Equations, 272 (2021), 1-45.
doi: 10.1016/j.jde.2020.09.020. |
[2] |
J. M. Ball,
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser.(2), 28 (1977), 473-486.
doi: 10.1093/qmath/28.4.473. |
[3] |
M. Berger and R. V. Kohn,
A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., 41 (1988), 841-863.
doi: 10.1002/cpa.3160410606. |
[4] |
J. Bricmont and A. Kupiainen,
Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.
doi: 10.1088/0951-7715/7/2/011. |
[5] |
M. Chipot and F. B. Weissler,
Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.
doi: 10.1137/0520060. |
[6] |
G. K. Duong and H. Zaag,
Profile of touch-down solution to a nonlocal MEMS model, Math. Models Methods Appl. Sci., 29 (2019), 1279-1348.
doi: 10.1142/S0218202519500222. |
[7] |
S. Filippas and R. V. Kohn,
Refined asymptotics for the blow-up of $u_t-\Delta u = u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.
doi: 10.1002/cpa.3160450703. |
[8] |
S. Filippas and W. X. Liu.,
On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 313-344.
doi: 10.1016/S0294-1449(16)30215-3. |
[9] |
H. Fujita,
On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[10] |
V. A. Galaktionov and J. L. Vázquez,
Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.
doi: 10.1137/0524071. |
[11] |
V. A. Galaktionov and J. L. Vázquez,
Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations, J. Differential Equations, 127 (1996), 1-40.
doi: 10.1006/jdeq.1996.0059. |
[12] |
Y. Giga and R. V. Kohn,
Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.
doi: 10.1002/cpa.3160380304. |
[13] |
Y. Giga and R. V. Kohn,
Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.
doi: 10.1512/iumj.1987.36.36001. |
[14] |
Y. Giga and R. V. Kohn,
Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.
doi: 10.1002/cpa.3160420607. |
[15] |
M. A. Herrero and J. J. L. Velázquez,
Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997.
|
[16] |
M. A. Herrero and J. J. L. Velázquez,
Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 381-450.
|
[17] |
M. A. Herrero and J. J. L. Velázquez,
Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 131-189.
doi: 10.1016/S0294-1449(16)30217-7. |
[18] |
M. A. Herrero and J. J. L. Velázquez,
Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 201-203.
|
[19] |
F. Merle,
Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45 (1992), 263-300.
doi: 10.1002/cpa.3160450303. |
[20] |
F. Merle and H. Zaag,
Stability of the blow-up profile for equations of the type $u_t = \Delta u +|u|^{p-1} u$, Duke Math. J., 86 (1997), 143-195.
|
[21] |
F. Merle and H. Zaag,
Stabilité du profil à l'explosion pour les équations du type $u_ t = \Delta u+\vert u\vert ^ {p-1}u$, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 345-350.
|
[22] |
V. T. Nguyen,
Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time, Phys. D, 339 (2017), 49-65.
doi: 10.1016/j.physd.2016.09.002. |
[23] |
V. T. Nguyen and H. Zaag,
Blow-up results for a strongly perturbed semilinear heat equation: Theoretical analysis and numerical method, Anal. PDE, 9 (2016), 229-257.
doi: 10.2140/apde.2016.9.229. |
[24] |
P. Quittner and P. Souplet, Superlinear parabolic Problems. Blow-up, Global Existence and Steady States, Second Edition. Birkhäuser Advanced Texts, 2019.
doi: 10.1007/978-3-030-18222-9. |
[25] |
P. Souplet, S. Tayachi and F. B. Weissler,
Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 45 (1996), 655-682.
doi: 10.1512/iumj.1996.45.1197. |
[26] |
S. Tayachi and H. Zaag,
Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Amer. Math. Soc., 371 (2019), 5899-5972.
doi: 10.1090/tran/7631. |
[27] |
S. Tayachi and H. Zaag, Existence and stability of a blow-up solution with a new prescribed behavior for a heat equation with a critical nonlinear gradient term, Actes du Colloque EDP-Normandie, Le Havre, 21–22, octobre 2015. Google Scholar |
[28] |
F. B. Weissler,
Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.
doi: 10.1016/0022-0396(84)90081-0. |
[29] |
H. Zaag,
Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 581-622.
doi: 10.1016/S0294-1449(98)80002-4. |
show all references
References:
[1] |
B. Abdelhedi and H. Zaag,
Construction of a blow-up solution for a perturbed nonlinear heat equation with a gradient and a non-local term, J. Differential Equations, 272 (2021), 1-45.
doi: 10.1016/j.jde.2020.09.020. |
[2] |
J. M. Ball,
Remarks on blow-up and nonexistence theorems for nonlinear evolution equations, Quart. J. Math. Oxford Ser.(2), 28 (1977), 473-486.
doi: 10.1093/qmath/28.4.473. |
[3] |
M. Berger and R. V. Kohn,
A rescaling algorithm for the numerical calculation of blowing-up solutions, Comm. Pure Appl. Math., 41 (1988), 841-863.
doi: 10.1002/cpa.3160410606. |
[4] |
J. Bricmont and A. Kupiainen,
Universality in blow-up for nonlinear heat equations, Nonlinearity, 7 (1994), 539-575.
doi: 10.1088/0951-7715/7/2/011. |
[5] |
M. Chipot and F. B. Weissler,
Some blow-up results for a nonlinear parabolic equation with a gradient term, SIAM J. Math. Anal., 20 (1989), 886-907.
doi: 10.1137/0520060. |
[6] |
G. K. Duong and H. Zaag,
Profile of touch-down solution to a nonlocal MEMS model, Math. Models Methods Appl. Sci., 29 (2019), 1279-1348.
doi: 10.1142/S0218202519500222. |
[7] |
S. Filippas and R. V. Kohn,
Refined asymptotics for the blow-up of $u_t-\Delta u = u^p$, Comm. Pure Appl. Math., 45 (1992), 821-869.
doi: 10.1002/cpa.3160450703. |
[8] |
S. Filippas and W. X. Liu.,
On the blowup of multidimensional semilinear heat equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 313-344.
doi: 10.1016/S0294-1449(16)30215-3. |
[9] |
H. Fujita,
On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I, 13 (1966), 109-124.
|
[10] |
V. A. Galaktionov and J. L. Vázquez,
Regional blow-up in a semilinear heat equation with convergence to a Hamilton-Jacobi equation, SIAM J. Math. Anal., 24 (1993), 1254-1276.
doi: 10.1137/0524071. |
[11] |
V. A. Galaktionov and J. L. Vázquez,
Blow-up for quasilinear heat equations described by means of nonlinear Hamilton-Jacobi equations, J. Differential Equations, 127 (1996), 1-40.
doi: 10.1006/jdeq.1996.0059. |
[12] |
Y. Giga and R. V. Kohn,
Asymptotically self-similar blow-up of semilinear heat equations, Comm. Pure Appl. Math., 38 (1985), 297-319.
doi: 10.1002/cpa.3160380304. |
[13] |
Y. Giga and R. V. Kohn,
Characterizing blowup using similarity variables, Indiana Univ. Math. J., 36 (1987), 1-40.
doi: 10.1512/iumj.1987.36.36001. |
[14] |
Y. Giga and R. V. Kohn,
Nondegeneracy of blowup for semilinear heat equations, Comm. Pure Appl. Math., 42 (1989), 845-884.
doi: 10.1002/cpa.3160420607. |
[15] |
M. A. Herrero and J. J. L. Velázquez,
Flat blow-up in one-dimensional semilinear heat equations, Differential Integral Equations, 5 (1992), 973-997.
|
[16] |
M. A. Herrero and J. J. L. Velázquez,
Generic behaviour of one-dimensional blow up patterns, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 19 (1992), 381-450.
|
[17] |
M. A. Herrero and J. J. L. Velázquez,
Blow-up behaviour of one-dimensional semilinear parabolic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 10 (1993), 131-189.
doi: 10.1016/S0294-1449(16)30217-7. |
[18] |
M. A. Herrero and J. J. L. Velázquez,
Comportement générique au voisinage d'un point d'explosion pour des solutions d'équations paraboliques unidimensionnelles, C. R. Acad. Sci. Paris Sér. I Math., 314 (1992), 201-203.
|
[19] |
F. Merle,
Solution of a nonlinear heat equation with arbitrarily given blow-up points, Comm. Pure Appl. Math., 45 (1992), 263-300.
doi: 10.1002/cpa.3160450303. |
[20] |
F. Merle and H. Zaag,
Stability of the blow-up profile for equations of the type $u_t = \Delta u +|u|^{p-1} u$, Duke Math. J., 86 (1997), 143-195.
|
[21] |
F. Merle and H. Zaag,
Stabilité du profil à l'explosion pour les équations du type $u_ t = \Delta u+\vert u\vert ^ {p-1}u$, C. R. Acad. Sci. Paris Sér. I Math., 322 (1996), 345-350.
|
[22] |
V. T. Nguyen,
Numerical analysis of the rescaling method for parabolic problems with blow-up in finite time, Phys. D, 339 (2017), 49-65.
doi: 10.1016/j.physd.2016.09.002. |
[23] |
V. T. Nguyen and H. Zaag,
Blow-up results for a strongly perturbed semilinear heat equation: Theoretical analysis and numerical method, Anal. PDE, 9 (2016), 229-257.
doi: 10.2140/apde.2016.9.229. |
[24] |
P. Quittner and P. Souplet, Superlinear parabolic Problems. Blow-up, Global Existence and Steady States, Second Edition. Birkhäuser Advanced Texts, 2019.
doi: 10.1007/978-3-030-18222-9. |
[25] |
P. Souplet, S. Tayachi and F. B. Weissler,
Exact self-similar blow-up of solutions of a semilinear parabolic equation with a nonlinear gradient term, Indiana Univ. Math. J., 45 (1996), 655-682.
doi: 10.1512/iumj.1996.45.1197. |
[26] |
S. Tayachi and H. Zaag,
Existence of a stable blow-up profile for the nonlinear heat equation with a critical power nonlinear gradient term, Trans. Amer. Math. Soc., 371 (2019), 5899-5972.
doi: 10.1090/tran/7631. |
[27] |
S. Tayachi and H. Zaag, Existence and stability of a blow-up solution with a new prescribed behavior for a heat equation with a critical nonlinear gradient term, Actes du Colloque EDP-Normandie, Le Havre, 21–22, octobre 2015. Google Scholar |
[28] |
F. B. Weissler,
Single point blow-up for a semilinear initial value problem, J. Differential Equations, 55 (1984), 204-224.
doi: 10.1016/0022-0396(84)90081-0. |
[29] |
H. Zaag,
Blow-up results for vector-valued nonlinear heat equations with no gradient structure, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 581-622.
doi: 10.1016/S0294-1449(98)80002-4. |
[1] |
Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021060 |
[2] |
Hong Yi, Chunlai Mu, Guangyu Xu, Pan Dai. A blow-up result for the chemotaxis system with nonlinear signal production and logistic source. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2537-2559. doi: 10.3934/dcdsb.2020194 |
[3] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[4] |
Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021014 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[7] |
Manoel J. Dos Santos, Baowei Feng, Dilberto S. Almeida Júnior, Mauro L. Santos. Global and exponential attractors for a nonlinear porous elastic system with delay term. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2805-2828. doi: 10.3934/dcdsb.2020206 |
[8] |
Ritu Agarwal, Kritika, Sunil Dutt Purohit, Devendra Kumar. Mathematical modelling of cytosolic calcium concentration distribution using non-local fractional operator. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021017 |
[9] |
Min Li. A three term Polak-Ribière-Polyak conjugate gradient method close to the memoryless BFGS quasi-Newton method. Journal of Industrial & Management Optimization, 2020, 16 (1) : 245-260. doi: 10.3934/jimo.2018149 |
[10] |
Xiaoming Wang. Quasi-periodic solutions for a class of second order differential equations with a nonlinear damping term. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 543-556. doi: 10.3934/dcdss.2017027 |
[11] |
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448 |
[12] |
Mirelson M. Freitas, Anderson J. A. Ramos, Manoel J. Dos Santos, Jamille L.L. Almeida. Dynamics of piezoelectric beams with magnetic effects and delay term. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021015 |
[13] |
Massimo Barnabei, Alessandro Borri, Andrea De Gaetano, Costanzo Manes, Pasquale Palumbo, Jorge Guerra Pires. A short-term food intake model involving glucose, insulin and ghrelin. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021114 |
[14] |
Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243 |
[15] |
Chih-Chiang Fang. Bayesian decision making in determining optimal leased term and preventive maintenance scheme for leased facilities. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020127 |
[16] |
Patrick Beißner, Emanuela Rosazza Gianin. The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 23-52. doi: 10.3934/puqr.2021002 |
[17] |
Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021129 |
[18] |
Christos Sourdis. A Liouville theorem for ancient solutions to a semilinear heat equation and its elliptic counterpart. Electronic Research Archive, , () : -. doi: 10.3934/era.2021016 |
[19] |
Antonio De Rosa, Domenico Angelo La Manna. A non local approximation of the Gaussian perimeter: Gamma convergence and Isoperimetric properties. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021059 |
[20] |
Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012 |
2019 Impact Factor: 1.233
Tools
Article outline
[Back to Top]