• Previous Article
    Global attractor for a nonlinear Schrödinger equation with a nonlinearity concentrated in one point
  • DCDS-S Home
  • This Issue
  • Next Article
    Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions
doi: 10.3934/dcdss.2021036

Frequency domain $ H_{\infty} $ control design for active suspension systems

1. 

University of Sidi Mohammed Ben Abdellah, Department of Physics, Faculty of Sciences Dhar El Mehraz, LISAC, BP 1796, Fes-Atlas, Morocco

2. 

University of Sidi Mohammed Ben Abdellah, Engineering, Systems and Applications, Laboratory National School of Applied Sciences (ENSA), Fez, Morocco

* Corresponding author: Jamal Mrazgua

Received  August 2020 Revised  February 2021 Published  March 2021

A methodology for fault-tolerant-control(FTC) is proposed that compensates actuator failures in active suspension systems (ASS). This methodology is based on a Frequency Domain approach that represents failures using a scale factor to optimize the ASS and improve ride comfort. The controller design is carried out using off-the-shelf tools based on linear matrix inequalities (LMIs), guaranteeing asymptotic stability, compensating the effect of actuator faults, and ensuring certain $ H_{\infty} $ performance. In the context of ASS, the performance guarantees correspond to ride comfort in the presence of road disturbances. To validate the approach, controllers are developed and tested in simulation for a quarter-car model: the results illustrate the effectiveness of the proposed approach.

Citation: Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021036
References:
[1]

M. Bahreini and J. Zarei, Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback, ISA Transactions, 86 (2019), 153-162.   Google Scholar

[2]

Y. Bo and W. Fuzhong, LMI approach to reliable $ H_{\infty} $ control of linear systems, Journal of Systems Engineering and Electronics, 17 (2006), 381-386.  doi: 10.1016/S1004-4132(06)60065-0.  Google Scholar

[3]

P. BucciJ. KirschenbaumL. A. ManganT. AldemirC. Smith and T. Wood, Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability, Reliability Engineering & System Safety, 93 (2008), 1616-1627.  doi: 10.1016/j.ress.2008.01.008.  Google Scholar

[4]

D. CaoX. Song and M. Ahmadian, Editors perspectives: Road vehicle suspension design, dynamics, and control, Vehicle System Dynamics, 49 (2011), 3-28.  doi: 10.1080/00423114.2010.532223.  Google Scholar

[5]

H. Chen and K.-H. Guo, Constrained $ H_{\infty} $ control of active suspensions: An LMI approach, IEEE Transactions on Control Systems Technology, 13 (2005), 412-421. doi: 10.1109/TCST.2004.841661.  Google Scholar

[6]

M. Z. Q. ChenY. HuC. Li and G. Chen, Performance benefits of using inerter in semiactive suspensions, IEEE Transactions on Control Systems Technology, 23 (2015), 1571-1577.  doi: 10.1109/TCST.2014.2364954.  Google Scholar

[7]

W. Chen and M. Saif, An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, Internat. J. Robust Nonlinear Control, 16 (2006), 1-19.  doi: 10.1002/rnc.1033.  Google Scholar

[8]

H. DuW. Li and N. Zhang, Integrated seat and suspension control for a quarter car with driver model, IEEE Transactions on Vehicular Technology, 61 (2012), 3893-3908.  doi: 10.1109/TVT.2012.2212472.  Google Scholar

[9]

H. Du and N. Zhang, $ H_{\infty} $ control of active vehicle suspensions with actuator time delay, J. Sound Vibration, 301 (2007), 236-252.  doi: 10.1016/j.jsv.2006.09.022.  Google Scholar

[10]

F. EL HaoussiE. H. Tissir and F. Tadeo, Advances in the robust stabilization of neutral systems with saturating actuators, International Journal of Ecology and Development, 28 (2014), 49-62.   Google Scholar

[11]

C. El-Kasri, A. Hmamed, E. H. Tissir and F. Tadeo, Robust $ H_{\infty} $ filtering for uncertain two-dimensional continuous systems with time varying delays, Multidimens. Syst. Signal Process., 24 (2013), 685-706. doi: 10.1007/s11045-013-0242-7.  Google Scholar

[12]

P. Finsler, Über das Vorkommen definiter semidefiniter Formen is Scharen quadratischer Formen, Comment. Math. Helv., 9 (1936), 188-192.  Google Scholar

[13]

P. Gahinet, A. Nemirovskii, A. J. Laud and M. Chilali, LMI Control Toolbox User's Guide, Natick, MA: The Math. Works Inc, 1995. Google Scholar

[14]

H. Gao, W. Sun and O. Kaynak, Vibration suspension of vehicle active suspension systems in finite frequency domain, Joint 48th IEEE Conf. Decision and Control and 28th Chinese Control Conf., Shanghai, P.R. China, (2009), 5170-5175. doi: 10.1109/CDC.2009.5400753.  Google Scholar

[15]

H. Gao, W. Sun and P. Shi, Robust sampled-data $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 18 (2009), 238-245. Google Scholar

[16]

Y. HuM. Z. Q. Chen and Z. Shu, Passive vehicle suspensions employing inerters with multiple performance requirements, Journal of Sound and Vibration, 333 (2014), 2212-2225.  doi: 10.1016/j.jsv.2013.12.016.  Google Scholar

[17]

T. Hu and Z. Lin, Control Systems With Actuator Saturation: Analysis and Design, Springer Science & Business Media, 2001. Google Scholar

[18]

T. Iwasaki and S. Hara, Generalized KYP Lemma: Unified frequency domain inequalities with design applications, IEEE Trans. Autom. Control, 50 (2005), 41-59. doi: 10.1109/TAC.2004.840475.  Google Scholar

[19]

H. Li, J. Yu, C. Hilton and H. Liu, Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Trans. Ind. Electron., 60 (2013), 3328-3338. doi: 10.1109/TIE.2012.2202354.  Google Scholar

[20]

Y. LiuJ. WangG.-H. Yang and C. B. Soh, Reliable nonlinear control system design using duplicated control elements, Internat. J. Robust Nonlinear Control, 7 (1997), 1103-1122.  doi: 10.1002/(SICI)1099-1239(199712)7:12<1103::AID-RNC343>3.0.CO;2-R.  Google Scholar

[21]

M.-M. Ma and H. Chen, Disturbance attenuation control of active suspension with non-linear actuator dynamics, IET Control Theory Appl., 5 (2011), 112-122. doi: 10.1049/iet-cta.2009.0457.  Google Scholar

[22]

X. Ma, P. K. Wong and J. Zhao, Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper, Mechanical Systems and Signal Processing, 117 (2019), 667-688. doi: 10.1016/j.ymssp.2018.08.022.  Google Scholar

[23]

J. Madhavanpillai and B. B. Das, Detection of faults in flight control actuators with hard saturation and friction non-linearity, International Journal of Reliability and Safety, 7 (2013), 108-127. doi: 10.1504/IJRS.2013.056376.  Google Scholar

[24]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fault-tolerant $H_{\infty} $ control approach, application to active half-vehicle suspension systems with actuators failure accounts, 2019 8th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, (2019), 271-276. doi: 10.1109/ICSC47195.2019.8950668.  Google Scholar

[25]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fuzzy fault-tolerant $ H_{\infty} $ control approach for nonlinear active suspension systems with actuator failure, Procedia Computer Science, 148 (2019), 465-474. doi: 10.1016/j.procs.2019.01.059.  Google Scholar

[26]

P. Mukhija, I. Narayan Kar and R. K. P. Bhatt, Robust absolute stability criteria for uncertain lurie system with interval time-varying delay, ASME J. Dyn. Syst. Meas. Control, 136 (2014), 041020, 7 pp. doi: 10.1115/1.4026872.  Google Scholar

[27]

N. P. Nguyen, T. T. Huynh, X. P. Do, N. Xuan Mung and S. K. Hong, Robust fault estimation using the intermediate observer: Application to the quadcopter, Sensors, 20 (2020), 4917. doi: 10.3390/s20174917.  Google Scholar

[28]

P. Panagi and M. M. Polycarpou, Decentralized fault tolerant control of a class of interconnected nonlinear systems, IEEE Trans. Automat. Control, 56 (2011), 178-184. doi: 10.1109/TAC.2010.2089650.  Google Scholar

[29]

R. Sakthivel, L. Susana Ramya, Y.-K. Ma, M. Malik and A. Leelamani, Stabilization of uncertain switched discrete-time systems against actuator faults and input saturation, Nonlinear Anal. Hybrid Syst., 35 (2020), 100827, 12 pp. doi: 10.1016/j.nahs.2019.100827.  Google Scholar

[30]

W. Sun, H. Gao and O. Kaynak, Finite frequency $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 19 (2010), 416-422. Google Scholar

[31]

K. Telbissi and A. Benzaouia, Robust fault-tolerant control for discrete-time switched systems with time delays, Internat. J. Adapt. Control Signal Process., 34 (2020), 389-406. doi: 10.1002/acs.3091.  Google Scholar

[32]

L. Xing, G. Levitin and C. Wang, Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors, John Wiley & Sons, 2019. Google Scholar

[33]

M. Yamashita, K. Fujimori, K. Hayakawa and H. Kimura, Application of $ H_{\infty} $ control to active suspension systems, \textitAutomatica, 30 (1994), 1717-1729. doi: 10.1016/0005-1098(94)90074-4.  Google Scholar

[34]

H. Zhang, Y. Shi and J. Wang, Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays, Internat. J. Control, 86 (2013), 1824-1836. doi: 10.1080/00207179.2013.797107.  Google Scholar

[35]

Q. Zhao and J. Jiang, Reliable state feedback control systemdesign against actuator failures, Automatica, 34 (1998), 1267-1272. doi: 10.1016/S0005-1098(98)00072-7.  Google Scholar

[36]

Z. Zhu, Y. Xia and M. Fu, Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, 58 (2011), 4898-4907. doi: 10.1109/TIE.2011.2107719.  Google Scholar

[37]

International Standards Organisation, Evaluation of Human Exposure to Whole-Body Vibration, Part 1-General requirements. ISO Geneva, Switzerland, 1997. Google Scholar

show all references

References:
[1]

M. Bahreini and J. Zarei, Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback, ISA Transactions, 86 (2019), 153-162.   Google Scholar

[2]

Y. Bo and W. Fuzhong, LMI approach to reliable $ H_{\infty} $ control of linear systems, Journal of Systems Engineering and Electronics, 17 (2006), 381-386.  doi: 10.1016/S1004-4132(06)60065-0.  Google Scholar

[3]

P. BucciJ. KirschenbaumL. A. ManganT. AldemirC. Smith and T. Wood, Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability, Reliability Engineering & System Safety, 93 (2008), 1616-1627.  doi: 10.1016/j.ress.2008.01.008.  Google Scholar

[4]

D. CaoX. Song and M. Ahmadian, Editors perspectives: Road vehicle suspension design, dynamics, and control, Vehicle System Dynamics, 49 (2011), 3-28.  doi: 10.1080/00423114.2010.532223.  Google Scholar

[5]

H. Chen and K.-H. Guo, Constrained $ H_{\infty} $ control of active suspensions: An LMI approach, IEEE Transactions on Control Systems Technology, 13 (2005), 412-421. doi: 10.1109/TCST.2004.841661.  Google Scholar

[6]

M. Z. Q. ChenY. HuC. Li and G. Chen, Performance benefits of using inerter in semiactive suspensions, IEEE Transactions on Control Systems Technology, 23 (2015), 1571-1577.  doi: 10.1109/TCST.2014.2364954.  Google Scholar

[7]

W. Chen and M. Saif, An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, Internat. J. Robust Nonlinear Control, 16 (2006), 1-19.  doi: 10.1002/rnc.1033.  Google Scholar

[8]

H. DuW. Li and N. Zhang, Integrated seat and suspension control for a quarter car with driver model, IEEE Transactions on Vehicular Technology, 61 (2012), 3893-3908.  doi: 10.1109/TVT.2012.2212472.  Google Scholar

[9]

H. Du and N. Zhang, $ H_{\infty} $ control of active vehicle suspensions with actuator time delay, J. Sound Vibration, 301 (2007), 236-252.  doi: 10.1016/j.jsv.2006.09.022.  Google Scholar

[10]

F. EL HaoussiE. H. Tissir and F. Tadeo, Advances in the robust stabilization of neutral systems with saturating actuators, International Journal of Ecology and Development, 28 (2014), 49-62.   Google Scholar

[11]

C. El-Kasri, A. Hmamed, E. H. Tissir and F. Tadeo, Robust $ H_{\infty} $ filtering for uncertain two-dimensional continuous systems with time varying delays, Multidimens. Syst. Signal Process., 24 (2013), 685-706. doi: 10.1007/s11045-013-0242-7.  Google Scholar

[12]

P. Finsler, Über das Vorkommen definiter semidefiniter Formen is Scharen quadratischer Formen, Comment. Math. Helv., 9 (1936), 188-192.  Google Scholar

[13]

P. Gahinet, A. Nemirovskii, A. J. Laud and M. Chilali, LMI Control Toolbox User's Guide, Natick, MA: The Math. Works Inc, 1995. Google Scholar

[14]

H. Gao, W. Sun and O. Kaynak, Vibration suspension of vehicle active suspension systems in finite frequency domain, Joint 48th IEEE Conf. Decision and Control and 28th Chinese Control Conf., Shanghai, P.R. China, (2009), 5170-5175. doi: 10.1109/CDC.2009.5400753.  Google Scholar

[15]

H. Gao, W. Sun and P. Shi, Robust sampled-data $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 18 (2009), 238-245. Google Scholar

[16]

Y. HuM. Z. Q. Chen and Z. Shu, Passive vehicle suspensions employing inerters with multiple performance requirements, Journal of Sound and Vibration, 333 (2014), 2212-2225.  doi: 10.1016/j.jsv.2013.12.016.  Google Scholar

[17]

T. Hu and Z. Lin, Control Systems With Actuator Saturation: Analysis and Design, Springer Science & Business Media, 2001. Google Scholar

[18]

T. Iwasaki and S. Hara, Generalized KYP Lemma: Unified frequency domain inequalities with design applications, IEEE Trans. Autom. Control, 50 (2005), 41-59. doi: 10.1109/TAC.2004.840475.  Google Scholar

[19]

H. Li, J. Yu, C. Hilton and H. Liu, Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Trans. Ind. Electron., 60 (2013), 3328-3338. doi: 10.1109/TIE.2012.2202354.  Google Scholar

[20]

Y. LiuJ. WangG.-H. Yang and C. B. Soh, Reliable nonlinear control system design using duplicated control elements, Internat. J. Robust Nonlinear Control, 7 (1997), 1103-1122.  doi: 10.1002/(SICI)1099-1239(199712)7:12<1103::AID-RNC343>3.0.CO;2-R.  Google Scholar

[21]

M.-M. Ma and H. Chen, Disturbance attenuation control of active suspension with non-linear actuator dynamics, IET Control Theory Appl., 5 (2011), 112-122. doi: 10.1049/iet-cta.2009.0457.  Google Scholar

[22]

X. Ma, P. K. Wong and J. Zhao, Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper, Mechanical Systems and Signal Processing, 117 (2019), 667-688. doi: 10.1016/j.ymssp.2018.08.022.  Google Scholar

[23]

J. Madhavanpillai and B. B. Das, Detection of faults in flight control actuators with hard saturation and friction non-linearity, International Journal of Reliability and Safety, 7 (2013), 108-127. doi: 10.1504/IJRS.2013.056376.  Google Scholar

[24]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fault-tolerant $H_{\infty} $ control approach, application to active half-vehicle suspension systems with actuators failure accounts, 2019 8th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, (2019), 271-276. doi: 10.1109/ICSC47195.2019.8950668.  Google Scholar

[25]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fuzzy fault-tolerant $ H_{\infty} $ control approach for nonlinear active suspension systems with actuator failure, Procedia Computer Science, 148 (2019), 465-474. doi: 10.1016/j.procs.2019.01.059.  Google Scholar

[26]

P. Mukhija, I. Narayan Kar and R. K. P. Bhatt, Robust absolute stability criteria for uncertain lurie system with interval time-varying delay, ASME J. Dyn. Syst. Meas. Control, 136 (2014), 041020, 7 pp. doi: 10.1115/1.4026872.  Google Scholar

[27]

N. P. Nguyen, T. T. Huynh, X. P. Do, N. Xuan Mung and S. K. Hong, Robust fault estimation using the intermediate observer: Application to the quadcopter, Sensors, 20 (2020), 4917. doi: 10.3390/s20174917.  Google Scholar

[28]

P. Panagi and M. M. Polycarpou, Decentralized fault tolerant control of a class of interconnected nonlinear systems, IEEE Trans. Automat. Control, 56 (2011), 178-184. doi: 10.1109/TAC.2010.2089650.  Google Scholar

[29]

R. Sakthivel, L. Susana Ramya, Y.-K. Ma, M. Malik and A. Leelamani, Stabilization of uncertain switched discrete-time systems against actuator faults and input saturation, Nonlinear Anal. Hybrid Syst., 35 (2020), 100827, 12 pp. doi: 10.1016/j.nahs.2019.100827.  Google Scholar

[30]

W. Sun, H. Gao and O. Kaynak, Finite frequency $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 19 (2010), 416-422. Google Scholar

[31]

K. Telbissi and A. Benzaouia, Robust fault-tolerant control for discrete-time switched systems with time delays, Internat. J. Adapt. Control Signal Process., 34 (2020), 389-406. doi: 10.1002/acs.3091.  Google Scholar

[32]

L. Xing, G. Levitin and C. Wang, Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors, John Wiley & Sons, 2019. Google Scholar

[33]

M. Yamashita, K. Fujimori, K. Hayakawa and H. Kimura, Application of $ H_{\infty} $ control to active suspension systems, \textitAutomatica, 30 (1994), 1717-1729. doi: 10.1016/0005-1098(94)90074-4.  Google Scholar

[34]

H. Zhang, Y. Shi and J. Wang, Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays, Internat. J. Control, 86 (2013), 1824-1836. doi: 10.1080/00207179.2013.797107.  Google Scholar

[35]

Q. Zhao and J. Jiang, Reliable state feedback control systemdesign against actuator failures, Automatica, 34 (1998), 1267-1272. doi: 10.1016/S0005-1098(98)00072-7.  Google Scholar

[36]

Z. Zhu, Y. Xia and M. Fu, Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, 58 (2011), 4898-4907. doi: 10.1109/TIE.2011.2107719.  Google Scholar

[37]

International Standards Organisation, Evaluation of Human Exposure to Whole-Body Vibration, Part 1-General requirements. ISO Geneva, Switzerland, 1997. Google Scholar

Figure 1.  Quarter-car model with an active suspension
Figure 2.  Bump response of sprung mass acceleration
Figure 3.  Bump response of suspension deflection
Figure 4.  Bump response of tyre deflection
Figure 5.  Transfer function
Figure 6.  Force of the actuator
Table 1.  Quarter-Car Model Parameters
$ m_{s} $ Suspended mass
$ m_{u} $ Unsupported mass
$ c_{s} $ Damping of the suspension system
$ k_{s} $ Stiffness of the suspension system
$ c_{t} $ Damping of the pneumatic tyre
$ k_{t} $ Compressibility of the pneumatic tyre
$z_{s} $ Displacement of the sprung mass
$ z_{u} $ Displacement of unsprung mass
$ \delta^ {f} (t) $ Fault-tolerant-control
$ m_{s} $ Suspended mass
$ m_{u} $ Unsupported mass
$ c_{s} $ Damping of the suspension system
$ k_{s} $ Stiffness of the suspension system
$ c_{t} $ Damping of the pneumatic tyre
$ k_{t} $ Compressibility of the pneumatic tyre
$z_{s} $ Displacement of the sprung mass
$ z_{u} $ Displacement of unsprung mass
$ \delta^ {f} (t) $ Fault-tolerant-control
Table 2.  Quarter-Car Model Parameters
$ m_{s} $ $ m_{u} $ $ k_{s} $ $ k_{t} $ $ c_{s} $ $ c_{t} $
320 40 18 200 1 10
kg kg KN/m KN/m KNs/m Ns/m
$ m_{s} $ $ m_{u} $ $ k_{s} $ $ k_{t} $ $ c_{s} $ $ c_{t} $
320 40 18 200 1 10
kg kg KN/m KN/m KNs/m Ns/m
[1]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[2]

Mostafa Ghelichi, A. M. Goltabar, H. R. Tavakoli, A. Karamodin. Neuro-fuzzy active control optimized by Tug of war optimization method for seismically excited benchmark highway bridge. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 333-351. doi: 10.3934/naco.2020029

[3]

Weihua Jiang, Xun Cao, Chuncheng Wang. Turing instability and pattern formations for reaction-diffusion systems on 2D bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021085

[4]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[5]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[6]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[7]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[8]

Pavol Bokes. Exact and WKB-approximate distributions in a gene expression model with feedback in burst frequency, burst size, and protein stability. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021126

[9]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[10]

Tobias Geiger, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of ODEs with state suprema. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021012

[11]

Carlos Fresneda-Portillo, Sergey E. Mikhailov. Analysis of Boundary-Domain Integral Equations to the mixed BVP for a compressible stokes system with variable viscosity. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3059-3088. doi: 10.3934/cpaa.2019137

[12]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[13]

Teddy Pichard. A moment closure based on a projection on the boundary of the realizability domain: 1D case. Kinetic & Related Models, 2020, 13 (6) : 1243-1280. doi: 10.3934/krm.2020045

[14]

Guodong Wang, Bijun Zuo. Energy equality for weak solutions to the 3D magnetohydrodynamic equations in a bounded domain. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021078

[15]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[16]

Sergey E. Mikhailov, Carlos F. Portillo. Boundary-Domain Integral Equations equivalent to an exterior mixed BVP for the variable-viscosity compressible Stokes PDEs. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1103-1133. doi: 10.3934/cpaa.2021009

[17]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, 2021, 15 (3) : 387-413. doi: 10.3934/ipi.2020073

[18]

J. Frédéric Bonnans, Justina Gianatti, Francisco J. Silva. On the convergence of the Sakawa-Shindo algorithm in stochastic control. Mathematical Control & Related Fields, 2016, 6 (3) : 391-406. doi: 10.3934/mcrf.2016008

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Lorenzo Freddi. Optimal control of the transmission rate in compartmental epidemics. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021007

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (60)
  • Cited by (0)

[Back to Top]