doi: 10.3934/dcdss.2021036
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Frequency domain $ H_{\infty} $ control design for active suspension systems

1. 

University of Sidi Mohammed Ben Abdellah, Department of Physics, Faculty of Sciences Dhar El Mehraz, LISAC, BP 1796, Fes-Atlas, Morocco

2. 

University of Sidi Mohammed Ben Abdellah, Engineering, Systems and Applications, Laboratory National School of Applied Sciences (ENSA), Fez, Morocco

* Corresponding author: Jamal Mrazgua

Received  August 2020 Revised  February 2021 Early access March 2021

A methodology for fault-tolerant-control(FTC) is proposed that compensates actuator failures in active suspension systems (ASS). This methodology is based on a Frequency Domain approach that represents failures using a scale factor to optimize the ASS and improve ride comfort. The controller design is carried out using off-the-shelf tools based on linear matrix inequalities (LMIs), guaranteeing asymptotic stability, compensating the effect of actuator faults, and ensuring certain $ H_{\infty} $ performance. In the context of ASS, the performance guarantees correspond to ride comfort in the presence of road disturbances. To validate the approach, controllers are developed and tested in simulation for a quarter-car model: the results illustrate the effectiveness of the proposed approach.

Citation: Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021036
References:
[1]

M. Bahreini and J. Zarei, Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback, ISA Transactions, 86 (2019), 153-162.   Google Scholar

[2]

Y. Bo and W. Fuzhong, LMI approach to reliable $ H_{\infty} $ control of linear systems, Journal of Systems Engineering and Electronics, 17 (2006), 381-386.  doi: 10.1016/S1004-4132(06)60065-0.  Google Scholar

[3]

P. BucciJ. KirschenbaumL. A. ManganT. AldemirC. Smith and T. Wood, Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability, Reliability Engineering & System Safety, 93 (2008), 1616-1627.  doi: 10.1016/j.ress.2008.01.008.  Google Scholar

[4]

D. CaoX. Song and M. Ahmadian, Editors perspectives: Road vehicle suspension design, dynamics, and control, Vehicle System Dynamics, 49 (2011), 3-28.  doi: 10.1080/00423114.2010.532223.  Google Scholar

[5]

H. Chen and K.-H. Guo, Constrained $ H_{\infty} $ control of active suspensions: An LMI approach, IEEE Transactions on Control Systems Technology, 13 (2005), 412-421. doi: 10.1109/TCST.2004.841661.  Google Scholar

[6]

M. Z. Q. ChenY. HuC. Li and G. Chen, Performance benefits of using inerter in semiactive suspensions, IEEE Transactions on Control Systems Technology, 23 (2015), 1571-1577.  doi: 10.1109/TCST.2014.2364954.  Google Scholar

[7]

W. Chen and M. Saif, An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, Internat. J. Robust Nonlinear Control, 16 (2006), 1-19.  doi: 10.1002/rnc.1033.  Google Scholar

[8]

H. DuW. Li and N. Zhang, Integrated seat and suspension control for a quarter car with driver model, IEEE Transactions on Vehicular Technology, 61 (2012), 3893-3908.  doi: 10.1109/TVT.2012.2212472.  Google Scholar

[9]

H. Du and N. Zhang, $ H_{\infty} $ control of active vehicle suspensions with actuator time delay, J. Sound Vibration, 301 (2007), 236-252.  doi: 10.1016/j.jsv.2006.09.022.  Google Scholar

[10]

F. EL HaoussiE. H. Tissir and F. Tadeo, Advances in the robust stabilization of neutral systems with saturating actuators, International Journal of Ecology and Development, 28 (2014), 49-62.   Google Scholar

[11]

C. El-Kasri, A. Hmamed, E. H. Tissir and F. Tadeo, Robust $ H_{\infty} $ filtering for uncertain two-dimensional continuous systems with time varying delays, Multidimens. Syst. Signal Process., 24 (2013), 685-706. doi: 10.1007/s11045-013-0242-7.  Google Scholar

[12]

P. Finsler, Über das Vorkommen definiter semidefiniter Formen is Scharen quadratischer Formen, Comment. Math. Helv., 9 (1936), 188-192.  Google Scholar

[13]

P. Gahinet, A. Nemirovskii, A. J. Laud and M. Chilali, LMI Control Toolbox User's Guide, Natick, MA: The Math. Works Inc, 1995. Google Scholar

[14]

H. Gao, W. Sun and O. Kaynak, Vibration suspension of vehicle active suspension systems in finite frequency domain, Joint 48th IEEE Conf. Decision and Control and 28th Chinese Control Conf., Shanghai, P.R. China, (2009), 5170-5175. doi: 10.1109/CDC.2009.5400753.  Google Scholar

[15]

H. Gao, W. Sun and P. Shi, Robust sampled-data $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 18 (2009), 238-245. Google Scholar

[16]

Y. HuM. Z. Q. Chen and Z. Shu, Passive vehicle suspensions employing inerters with multiple performance requirements, Journal of Sound and Vibration, 333 (2014), 2212-2225.  doi: 10.1016/j.jsv.2013.12.016.  Google Scholar

[17]

T. Hu and Z. Lin, Control Systems With Actuator Saturation: Analysis and Design, Springer Science & Business Media, 2001. Google Scholar

[18]

T. Iwasaki and S. Hara, Generalized KYP Lemma: Unified frequency domain inequalities with design applications, IEEE Trans. Autom. Control, 50 (2005), 41-59. doi: 10.1109/TAC.2004.840475.  Google Scholar

[19]

H. Li, J. Yu, C. Hilton and H. Liu, Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Trans. Ind. Electron., 60 (2013), 3328-3338. doi: 10.1109/TIE.2012.2202354.  Google Scholar

[20]

Y. LiuJ. WangG.-H. Yang and C. B. Soh, Reliable nonlinear control system design using duplicated control elements, Internat. J. Robust Nonlinear Control, 7 (1997), 1103-1122.  doi: 10.1002/(SICI)1099-1239(199712)7:12<1103::AID-RNC343>3.0.CO;2-R.  Google Scholar

[21]

M.-M. Ma and H. Chen, Disturbance attenuation control of active suspension with non-linear actuator dynamics, IET Control Theory Appl., 5 (2011), 112-122. doi: 10.1049/iet-cta.2009.0457.  Google Scholar

[22]

X. Ma, P. K. Wong and J. Zhao, Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper, Mechanical Systems and Signal Processing, 117 (2019), 667-688. doi: 10.1016/j.ymssp.2018.08.022.  Google Scholar

[23]

J. Madhavanpillai and B. B. Das, Detection of faults in flight control actuators with hard saturation and friction non-linearity, International Journal of Reliability and Safety, 7 (2013), 108-127. doi: 10.1504/IJRS.2013.056376.  Google Scholar

[24]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fault-tolerant $H_{\infty} $ control approach, application to active half-vehicle suspension systems with actuators failure accounts, 2019 8th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, (2019), 271-276. doi: 10.1109/ICSC47195.2019.8950668.  Google Scholar

[25]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fuzzy fault-tolerant $ H_{\infty} $ control approach for nonlinear active suspension systems with actuator failure, Procedia Computer Science, 148 (2019), 465-474. doi: 10.1016/j.procs.2019.01.059.  Google Scholar

[26]

P. Mukhija, I. Narayan Kar and R. K. P. Bhatt, Robust absolute stability criteria for uncertain lurie system with interval time-varying delay, ASME J. Dyn. Syst. Meas. Control, 136 (2014), 041020, 7 pp. doi: 10.1115/1.4026872.  Google Scholar

[27]

N. P. Nguyen, T. T. Huynh, X. P. Do, N. Xuan Mung and S. K. Hong, Robust fault estimation using the intermediate observer: Application to the quadcopter, Sensors, 20 (2020), 4917. doi: 10.3390/s20174917.  Google Scholar

[28]

P. Panagi and M. M. Polycarpou, Decentralized fault tolerant control of a class of interconnected nonlinear systems, IEEE Trans. Automat. Control, 56 (2011), 178-184. doi: 10.1109/TAC.2010.2089650.  Google Scholar

[29]

R. Sakthivel, L. Susana Ramya, Y.-K. Ma, M. Malik and A. Leelamani, Stabilization of uncertain switched discrete-time systems against actuator faults and input saturation, Nonlinear Anal. Hybrid Syst., 35 (2020), 100827, 12 pp. doi: 10.1016/j.nahs.2019.100827.  Google Scholar

[30]

W. Sun, H. Gao and O. Kaynak, Finite frequency $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 19 (2010), 416-422. Google Scholar

[31]

K. Telbissi and A. Benzaouia, Robust fault-tolerant control for discrete-time switched systems with time delays, Internat. J. Adapt. Control Signal Process., 34 (2020), 389-406. doi: 10.1002/acs.3091.  Google Scholar

[32]

L. Xing, G. Levitin and C. Wang, Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors, John Wiley & Sons, 2019. Google Scholar

[33]

M. Yamashita, K. Fujimori, K. Hayakawa and H. Kimura, Application of $ H_{\infty} $ control to active suspension systems, \textitAutomatica, 30 (1994), 1717-1729. doi: 10.1016/0005-1098(94)90074-4.  Google Scholar

[34]

H. Zhang, Y. Shi and J. Wang, Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays, Internat. J. Control, 86 (2013), 1824-1836. doi: 10.1080/00207179.2013.797107.  Google Scholar

[35]

Q. Zhao and J. Jiang, Reliable state feedback control systemdesign against actuator failures, Automatica, 34 (1998), 1267-1272. doi: 10.1016/S0005-1098(98)00072-7.  Google Scholar

[36]

Z. Zhu, Y. Xia and M. Fu, Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, 58 (2011), 4898-4907. doi: 10.1109/TIE.2011.2107719.  Google Scholar

[37]

International Standards Organisation, Evaluation of Human Exposure to Whole-Body Vibration, Part 1-General requirements. ISO Geneva, Switzerland, 1997. Google Scholar

show all references

References:
[1]

M. Bahreini and J. Zarei, Robust fault-tolerant control for networked control systems subject to random delays via static-output feedback, ISA Transactions, 86 (2019), 153-162.   Google Scholar

[2]

Y. Bo and W. Fuzhong, LMI approach to reliable $ H_{\infty} $ control of linear systems, Journal of Systems Engineering and Electronics, 17 (2006), 381-386.  doi: 10.1016/S1004-4132(06)60065-0.  Google Scholar

[3]

P. BucciJ. KirschenbaumL. A. ManganT. AldemirC. Smith and T. Wood, Construction of event-tree/fault-tree models from a Markov approach to dynamic system reliability, Reliability Engineering & System Safety, 93 (2008), 1616-1627.  doi: 10.1016/j.ress.2008.01.008.  Google Scholar

[4]

D. CaoX. Song and M. Ahmadian, Editors perspectives: Road vehicle suspension design, dynamics, and control, Vehicle System Dynamics, 49 (2011), 3-28.  doi: 10.1080/00423114.2010.532223.  Google Scholar

[5]

H. Chen and K.-H. Guo, Constrained $ H_{\infty} $ control of active suspensions: An LMI approach, IEEE Transactions on Control Systems Technology, 13 (2005), 412-421. doi: 10.1109/TCST.2004.841661.  Google Scholar

[6]

M. Z. Q. ChenY. HuC. Li and G. Chen, Performance benefits of using inerter in semiactive suspensions, IEEE Transactions on Control Systems Technology, 23 (2015), 1571-1577.  doi: 10.1109/TCST.2014.2364954.  Google Scholar

[7]

W. Chen and M. Saif, An iterative learning observer for fault detection and accommodation in nonlinear time-delay systems, Internat. J. Robust Nonlinear Control, 16 (2006), 1-19.  doi: 10.1002/rnc.1033.  Google Scholar

[8]

H. DuW. Li and N. Zhang, Integrated seat and suspension control for a quarter car with driver model, IEEE Transactions on Vehicular Technology, 61 (2012), 3893-3908.  doi: 10.1109/TVT.2012.2212472.  Google Scholar

[9]

H. Du and N. Zhang, $ H_{\infty} $ control of active vehicle suspensions with actuator time delay, J. Sound Vibration, 301 (2007), 236-252.  doi: 10.1016/j.jsv.2006.09.022.  Google Scholar

[10]

F. EL HaoussiE. H. Tissir and F. Tadeo, Advances in the robust stabilization of neutral systems with saturating actuators, International Journal of Ecology and Development, 28 (2014), 49-62.   Google Scholar

[11]

C. El-Kasri, A. Hmamed, E. H. Tissir and F. Tadeo, Robust $ H_{\infty} $ filtering for uncertain two-dimensional continuous systems with time varying delays, Multidimens. Syst. Signal Process., 24 (2013), 685-706. doi: 10.1007/s11045-013-0242-7.  Google Scholar

[12]

P. Finsler, Über das Vorkommen definiter semidefiniter Formen is Scharen quadratischer Formen, Comment. Math. Helv., 9 (1936), 188-192.  Google Scholar

[13]

P. Gahinet, A. Nemirovskii, A. J. Laud and M. Chilali, LMI Control Toolbox User's Guide, Natick, MA: The Math. Works Inc, 1995. Google Scholar

[14]

H. Gao, W. Sun and O. Kaynak, Vibration suspension of vehicle active suspension systems in finite frequency domain, Joint 48th IEEE Conf. Decision and Control and 28th Chinese Control Conf., Shanghai, P.R. China, (2009), 5170-5175. doi: 10.1109/CDC.2009.5400753.  Google Scholar

[15]

H. Gao, W. Sun and P. Shi, Robust sampled-data $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 18 (2009), 238-245. Google Scholar

[16]

Y. HuM. Z. Q. Chen and Z. Shu, Passive vehicle suspensions employing inerters with multiple performance requirements, Journal of Sound and Vibration, 333 (2014), 2212-2225.  doi: 10.1016/j.jsv.2013.12.016.  Google Scholar

[17]

T. Hu and Z. Lin, Control Systems With Actuator Saturation: Analysis and Design, Springer Science & Business Media, 2001. Google Scholar

[18]

T. Iwasaki and S. Hara, Generalized KYP Lemma: Unified frequency domain inequalities with design applications, IEEE Trans. Autom. Control, 50 (2005), 41-59. doi: 10.1109/TAC.2004.840475.  Google Scholar

[19]

H. Li, J. Yu, C. Hilton and H. Liu, Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Trans. Ind. Electron., 60 (2013), 3328-3338. doi: 10.1109/TIE.2012.2202354.  Google Scholar

[20]

Y. LiuJ. WangG.-H. Yang and C. B. Soh, Reliable nonlinear control system design using duplicated control elements, Internat. J. Robust Nonlinear Control, 7 (1997), 1103-1122.  doi: 10.1002/(SICI)1099-1239(199712)7:12<1103::AID-RNC343>3.0.CO;2-R.  Google Scholar

[21]

M.-M. Ma and H. Chen, Disturbance attenuation control of active suspension with non-linear actuator dynamics, IET Control Theory Appl., 5 (2011), 112-122. doi: 10.1049/iet-cta.2009.0457.  Google Scholar

[22]

X. Ma, P. K. Wong and J. Zhao, Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper, Mechanical Systems and Signal Processing, 117 (2019), 667-688. doi: 10.1016/j.ymssp.2018.08.022.  Google Scholar

[23]

J. Madhavanpillai and B. B. Das, Detection of faults in flight control actuators with hard saturation and friction non-linearity, International Journal of Reliability and Safety, 7 (2013), 108-127. doi: 10.1504/IJRS.2013.056376.  Google Scholar

[24]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fault-tolerant $H_{\infty} $ control approach, application to active half-vehicle suspension systems with actuators failure accounts, 2019 8th International Conference on Systems and Control (ICSC), Marrakesh, Morocco, (2019), 271-276. doi: 10.1109/ICSC47195.2019.8950668.  Google Scholar

[25]

J. Mrazgua, E. H. Tissir and M. Ouahi, Fuzzy fault-tolerant $ H_{\infty} $ control approach for nonlinear active suspension systems with actuator failure, Procedia Computer Science, 148 (2019), 465-474. doi: 10.1016/j.procs.2019.01.059.  Google Scholar

[26]

P. Mukhija, I. Narayan Kar and R. K. P. Bhatt, Robust absolute stability criteria for uncertain lurie system with interval time-varying delay, ASME J. Dyn. Syst. Meas. Control, 136 (2014), 041020, 7 pp. doi: 10.1115/1.4026872.  Google Scholar

[27]

N. P. Nguyen, T. T. Huynh, X. P. Do, N. Xuan Mung and S. K. Hong, Robust fault estimation using the intermediate observer: Application to the quadcopter, Sensors, 20 (2020), 4917. doi: 10.3390/s20174917.  Google Scholar

[28]

P. Panagi and M. M. Polycarpou, Decentralized fault tolerant control of a class of interconnected nonlinear systems, IEEE Trans. Automat. Control, 56 (2011), 178-184. doi: 10.1109/TAC.2010.2089650.  Google Scholar

[29]

R. Sakthivel, L. Susana Ramya, Y.-K. Ma, M. Malik and A. Leelamani, Stabilization of uncertain switched discrete-time systems against actuator faults and input saturation, Nonlinear Anal. Hybrid Syst., 35 (2020), 100827, 12 pp. doi: 10.1016/j.nahs.2019.100827.  Google Scholar

[30]

W. Sun, H. Gao and O. Kaynak, Finite frequency $ H_ {\infty} $ control for vehicle active suspension systems, IEEE Transactions on Control Systems Technology, 19 (2010), 416-422. Google Scholar

[31]

K. Telbissi and A. Benzaouia, Robust fault-tolerant control for discrete-time switched systems with time delays, Internat. J. Adapt. Control Signal Process., 34 (2020), 389-406. doi: 10.1002/acs.3091.  Google Scholar

[32]

L. Xing, G. Levitin and C. Wang, Dynamic System Reliability: Modeling and Analysis of Dynamic and Dependent Behaviors, John Wiley & Sons, 2019. Google Scholar

[33]

M. Yamashita, K. Fujimori, K. Hayakawa and H. Kimura, Application of $ H_{\infty} $ control to active suspension systems, \textitAutomatica, 30 (1994), 1717-1729. doi: 10.1016/0005-1098(94)90074-4.  Google Scholar

[34]

H. Zhang, Y. Shi and J. Wang, Observer-based tracking controller design for networked predictive control systems with uncertain Markov delays, Internat. J. Control, 86 (2013), 1824-1836. doi: 10.1080/00207179.2013.797107.  Google Scholar

[35]

Q. Zhao and J. Jiang, Reliable state feedback control systemdesign against actuator failures, Automatica, 34 (1998), 1267-1272. doi: 10.1016/S0005-1098(98)00072-7.  Google Scholar

[36]

Z. Zhu, Y. Xia and M. Fu, Adaptive sliding mode control for attitude stabilization with actuator saturation, IEEE Transactions on Industrial Electronics, 58 (2011), 4898-4907. doi: 10.1109/TIE.2011.2107719.  Google Scholar

[37]

International Standards Organisation, Evaluation of Human Exposure to Whole-Body Vibration, Part 1-General requirements. ISO Geneva, Switzerland, 1997. Google Scholar

Figure 1.  Quarter-car model with an active suspension
Figure 2.  Bump response of sprung mass acceleration
Figure 3.  Bump response of suspension deflection
Figure 4.  Bump response of tyre deflection
Figure 5.  Transfer function
Figure 6.  Force of the actuator
Table 1.  Quarter-Car Model Parameters
$ m_{s} $ Suspended mass
$ m_{u} $ Unsupported mass
$ c_{s} $ Damping of the suspension system
$ k_{s} $ Stiffness of the suspension system
$ c_{t} $ Damping of the pneumatic tyre
$ k_{t} $ Compressibility of the pneumatic tyre
$z_{s} $ Displacement of the sprung mass
$ z_{u} $ Displacement of unsprung mass
$ \delta^ {f} (t) $ Fault-tolerant-control
$ m_{s} $ Suspended mass
$ m_{u} $ Unsupported mass
$ c_{s} $ Damping of the suspension system
$ k_{s} $ Stiffness of the suspension system
$ c_{t} $ Damping of the pneumatic tyre
$ k_{t} $ Compressibility of the pneumatic tyre
$z_{s} $ Displacement of the sprung mass
$ z_{u} $ Displacement of unsprung mass
$ \delta^ {f} (t) $ Fault-tolerant-control
Table 2.  Quarter-Car Model Parameters
$ m_{s} $ $ m_{u} $ $ k_{s} $ $ k_{t} $ $ c_{s} $ $ c_{t} $
320 40 18 200 1 10
kg kg KN/m KN/m KNs/m Ns/m
$ m_{s} $ $ m_{u} $ $ k_{s} $ $ k_{t} $ $ c_{s} $ $ c_{t} $
320 40 18 200 1 10
kg kg KN/m KN/m KNs/m Ns/m
[1]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[2]

Hongru Ren, Shubo Li, Changxin Lu. Event-triggered adaptive fault-tolerant control for multi-agent systems with unknown disturbances. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1395-1414. doi: 10.3934/dcdss.2020379

[3]

Martene L. Fair, Stephen L. Campbell. Active incipient fault detection in continuous time systems with multiple simultaneous faults. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 211-224. doi: 10.3934/naco.2011.1.211

[4]

Jianping Zhou, Yamin Liu, Ju H. Park, Qingkai Kong, Zhen Wang. Fault-tolerant anti-synchronization control for chaotic switched neural networks with time delay and reaction diffusion. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1569-1589. doi: 10.3934/dcdss.2020357

[5]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[6]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[7]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[8]

Chandra Shekhar, Amit Kumar, Shreekant Varshney, Sherif Ibrahim Ammar. $ \bf{M/G/1} $ fault-tolerant machining system with imperfection. Journal of Industrial & Management Optimization, 2021, 17 (1) : 1-28. doi: 10.3934/jimo.2019096

[9]

Han Wu, Changfan Zhang, Jing He, Kaihui Zhao. Distributed fault-tolerant consensus tracking for networked non-identical motors. Journal of Industrial & Management Optimization, 2017, 13 (2) : 917-929. doi: 10.3934/jimo.2016053

[10]

Suoqin Jin, Fang-Xiang Wu, Xiufen Zou. Domain control of nonlinear networked systems and applications to complex disease networks. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2169-2206. doi: 10.3934/dcdsb.2017091

[11]

Hyukjin Lee, Cheng-Chew Lim, Jinho Choi. Joint backoff control in time and frequency for multichannel wireless systems and its Markov model for analysis. Discrete & Continuous Dynamical Systems - B, 2011, 16 (4) : 1083-1099. doi: 10.3934/dcdsb.2011.16.1083

[12]

David L. Russell. Coefficient identification and fault detection in linear elastic systems; one dimensional problems. Mathematical Control & Related Fields, 2011, 1 (3) : 391-411. doi: 10.3934/mcrf.2011.1.391

[13]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems & Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[14]

Giovambattista Amendola, Mauro Fabrizio, John Murrough Golden. Minimum free energy in the frequency domain for a heat conductor with memory. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 793-816. doi: 10.3934/dcdsb.2010.14.793

[15]

Bopeng Rao, Xu Zhang. Frequency domain approach to decay rates for a coupled hyperbolic-parabolic system. Communications on Pure &amp; Applied Analysis, 2021, 20 (7&8) : 2789-2809. doi: 10.3934/cpaa.2021119

[16]

Hao Sun, Shihua Li, Xuming Wang. Output feedback based sliding mode control for fuel quantity actuator system using a reduced-order GPIO. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1447-1464. doi: 10.3934/dcdss.2020375

[17]

Gero Friesecke, Felix Henneke, Karl Kunisch. Frequency-sparse optimal quantum control. Mathematical Control & Related Fields, 2018, 8 (1) : 155-176. doi: 10.3934/mcrf.2018007

[18]

Qi Li, Hong Xue, Changxin Lu. Event-based fault detection for interval type-2 fuzzy systems with measurement outliers. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1301-1328. doi: 10.3934/dcdss.2020412

[19]

Lei Liu, Shaoying Lu, Cunwu Han, Chao Li, Zejin Feng. Fault estimation and optimization for uncertain disturbed singularly perturbed systems with time-delay. Numerical Algebra, Control & Optimization, 2020, 10 (3) : 367-379. doi: 10.3934/naco.2020008

[20]

Sergey Popov, Volker Reitmann. Frequency domain conditions for finite-dimensional projectors and determining observations for the set of amenable solutions. Discrete & Continuous Dynamical Systems, 2014, 34 (1) : 249-267. doi: 10.3934/dcds.2014.34.249

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (100)
  • HTML views (242)
  • Cited by (0)

[Back to Top]