- Previous Article
- DCDS-S Home
- This Issue
-
Next Article
Parallelization of a finite volumes discretization for anisotropic diffusion problems using an improved Schur complement technique
The Orlicz Minkowski problem involving $ 0 < p < 1 $: From one constant to an infinite interval
1. | School of Computer Science and Mathematics, Fujian University of Technology, Fuzhou 350118, China |
2. | Department of Mathematics, University of Chinese Academy of Sciences, Beijing 100049, China |
$ c\varphi (h_{K})dS(K, \cdot) = d\mu\quad \mbox{on}\, {\mathbb{S}}^{n-1} $ |
$ \mu $ |
$ {\mathbb{S}}^{n-1} $ |
$ h_{K} $ |
$ K $ |
$ S_{K} $ |
$ K $ |
$ c $ |
$ \varphi $ |
$ {\it infinity} $ |
$ c_{*}>0 $ |
$ c\in [c_{*}, +\infty) $ |
$ K_{c} $ |
References:
[1] |
J. Ai, K.-S. Chou and J. Wei,
Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations, 13 (2001), 311-337.
doi: 10.1007/s005260000075. |
[2] |
A. D. Aleksandrov, On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sbornik N.S., 3 (1938), 27-46; On the surface area measure of convex bodies, Mat. Sbornik N.S., 6 (1939), 167-174. Google Scholar |
[3] |
B. Andrews,
Gauss curvature flow: The fate of the rolling stones, Invent. Math., 138 (1999), 151-161.
doi: 10.1007/s002220050344. |
[4] |
B. Andrews, Classifications of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), 443-459.
doi: 10.1090/S0894-0347-02-00415-0. |
[5] |
M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners Existence Results via the variational approach, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-227-8. |
[6] |
K. J. B$\ddot{o}$r$\ddot{o}$czky, E. Lutwak, D. Yang and G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), 1974-1997.
doi: 10.1016/j.aim.2012.07.015. |
[7] |
K. J. B$\ddot{o}$r$\ddot{o}$czky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852.
doi: 10.1090/S0894-0347-2012-00741-3. |
[8] |
K. J. B$\ddot{o}$r$\ddot{o}$czky and H. T. Trinh, The planar $L_{p}$-Minkowski problem for $0 < p < 1$, Adv. Appl. Math., 87 (2017), 58-81.
doi: 10.1016/j.aam.2016.12.007. |
[9] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for non-linear second order elliptic equations I. Monge-Amp$\grave{e}$re equation, Comm. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306. |
[10] |
E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. J$\ddot{o}$rgens, Michigan Math. J., 5 (1958), 105-126. |
[11] |
W. Chen, $L_{p}$ Minkowski problem with not necessarily positive data, Adv. Math., 201 (2006), 77-89.
doi: 10.1016/j.aim.2004.11.007. |
[12] |
S. Chen, Q. Li and G. Zhu, On the $L_{p}$ Monge-Amp$\grave{e}$re equation, J. Differential Equations, 263 (2017), 4997-5011.
doi: 10.1016/j.jde.2017.06.007. |
[13] |
S. Y. Cheng and S. T. Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math., 29 (1976), 495-516.
doi: 10.1002/cpa.3160290504. |
[14] |
K.-S. Chou and X.-J. Wang, The $L_{p}$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.
doi: 10.1016/j.aim.2005.07.004. |
[15] |
J. Dou and M. Zhu, The two dimensional $L_{p}$ Minkowski problem and nonlinear equations with negative exponents, Adv. Math., 230 (2012), 1209-1221.
doi: 10.1016/j.aim.2012.02.027. |
[16] |
W. Fenchel and B. Jessen, Mengenfunktionen und konvexe K$\ddot{o}$rper, Danske Vid. Selskab. Mat.-fys. Medd., 16 (1938), 1-31. Google Scholar |
[17] |
W. J. Firey, Shapes of worn stones, Mathematika, 21 (1974), 1-11.
doi: 10.1112/S0025579300005714. |
[18] |
M. Gage, Evolving planes curves by curvature in relative geometries, Duke Math. J., 72 (1993), 441-466. |
[19] |
M. Gage and Y. Li, Evolving planes curves by curvature in relative geometries, Duke Math. J., 75 (1994), 79-98. |
[20] |
C. Haberl, E. Lutwak, D. Yang and G. Zhang, The even Orlicz Minkowski problem, Adv. Math., 224 (2010), 2485-2510.
doi: 10.1016/j.aim.2010.02.006. |
[21] |
C. Haberl and F. E. Schuster, Asymmetric affine $L_{p}$ Sobolev inequalities, J. Funct. Anal., 257 (2009), 641-658.
doi: 10.1016/j.jfa.2009.04.009. |
[22] |
C. Haberl, F. E. Schuster and J. Xiao, An asymmetric affine P$\acute{o}$lya-Szeg$\ddot{o}$ principle, Math. Ann., 352 (2012), 517-542.
doi: 10.1007/s00208-011-0640-9. |
[23] |
Q. Huang and B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 48 (2012), 281-297.
doi: 10.1007/s00454-012-9434-4. |
[24] |
Y. Huang, J. Liu and L. Xu, On the uniqueness of the $L_{p}$ Minkowski problems: The constant $p$-curvature case in ${\mathbb{R}}^{3}$, Adv. Math., 281 (2015), 906-927.
doi: 10.1016/j.aim.2015.02.021. |
[25] |
D. Hug, E. Lutwak, D. Yang and G. Zhang, On the $L_{p}$ Minkowski problem for polytopes, Discrete Comput. Geom., 33 (2005), 699-715.
doi: 10.1007/s00454-004-1149-8. |
[26] |
M. N. Ivaki, A flow approach to the $L_{-2}$ Minkowski problem, Adv. Appl. Math., 50 (2013), 445-464.
doi: 10.1016/j.aam.2012.09.003. |
[27] |
H. Jian and J. Lu, Existence of solutions to the Orlicz-Minkowski problem, Adv. Math., 344 (2019), 262-288.
doi: 10.1016/j.aim.2019.01.004. |
[28] |
H. Jian, J. Lu and X.-J. Wang, Nonuniqueness of solutions to the $L_{p}$-Minkowski problem, Adv. Math., 281 (2015), 845-856.
doi: 10.1016/j.aim.2015.05.010. |
[29] |
M.-Y. Jiang, Remarks on the 2-dimensional $L_{p}$-Minkowski problem, Adv. Nonlinear Stud., 10 (2010), 297-313.
doi: 10.1515/ans-2010-0204. |
[30] |
H. Lewy, On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc., 43 (1938), 258-270.
doi: 10.2307/1990042. |
[31] |
M. Ludwig, General affine surface areas, Adv. Math., 224 (2010), 2346-2360.
doi: 10.1016/j.aim.2010.02.004. |
[32] |
M. Ludwig and M. Reitzner, A classification of $ {\rm{SL}} (n)$ invariant valuations, Ann. of Math., 172 (2010), 1219-1267.
doi: 10.4007/annals.2010.172.1219. |
[33] |
E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.
doi: 10.4310/jdg/1214454097. |
[34] |
E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.
doi: 10.1006/aima.1996.0022. |
[35] |
E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., 41 (1995), 227-246.
doi: 10.4310/jdg/1214456011. |
[36] |
E. Lutwak, D. Yang and G. Zhang, On the $L_{p}$-Minkowski problem, Trans. Amer. Math. Soc., 356 (2004), 4359-4370.
doi: 10.1090/S0002-9947-03-03403-2. |
[37] |
E. Lutwak, D. Yang and G. Zhang, Optimal Sobolev norms and the $L_{p}$-Minkowski problem, Int. Math. Res. Not., (2006), Art. ID 62987, 21 pp.
doi: 10.1155/IMRN/2006/62987. |
[38] |
E. Lutwak, D. Yang and G. Zhang, Orlicz projection bodies, Adv. Math., 223 (2010), 220-242.
doi: 10.1016/j.aim.2009.08.002. |
[39] |
E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Differential Geom., 84 (2010), 365-387.
doi: 10.4310/jdg/1274707317. |
[40] |
M. Meyer and E. Werner, On the $p$-affine surface area, Adv. Math., 152 (2000), 288-313.
doi: 10.1006/aima.1999.1902. |
[41] |
H. Minkowski, Volumen und oberfl$\ddot{a}$che, Math. Ann., 57 (1903), 447-495.
doi: 10.1007/BF01445180. |
[42] |
L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394.
doi: 10.1002/cpa.3160060303. |
[43] |
A. V. Pogorelov, The Minkowski Multidimensional Problem, V. H. Winston Sons, Washington D.C., 1978. |
[44] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511526282.![]() ![]() |
[45] |
C. Sch$\ddot{u}$tt and E. Werner, Surface bodies and $p$-affine surface area, Adv. Math., 187 (2004), 98-145.
doi: 10.1016/j.aim.2003.07.018. |
[46] |
A. Stancu, The discrete plannar $L_{0}$-Minkowski problem, Adv. Math., 167 (2002), 160-174.
doi: 10.1006/aima.2001.2040. |
[47] |
A. Stancu, On the number of solutions to the discrete two-dimensional $L_{0}$-Minkowski problem, Adv. Math., 180 (2003), 290-323.
doi: 10.1016/S0001-8708(03)00005-7. |
[48] |
M. Struwe, Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2008 (Four edition). |
[49] |
Y. Sun, Existence and uniqueness of solutions to Orlicz Minkowski problems involving $0 <p<1$, Adv. Appl. Math., 101 (2018), 184-214. Google Scholar |
[50] |
Y. Sun and Y. Long, The planar Orlicz Minkowski problme in the $L^{1}$-sense, Adv. Math., 281 (2015), 1364-1383.
doi: 10.1016/j.aim.2015.03.032. |
[51] |
Y. Sun and D. Zhang, The planar Orlicz Minkowski problem for $p = 0$ without even assumptions, J. Geom. Anal., 29 (2019), 3384-3404.
doi: 10.1007/s12220-018-00114-x. |
[52] |
G. Tzitz$\acute{e}$ica, Sur une nouvelle classe de surfaces, Rend. Circ. Mat. Palermo, 25 (1908), 180-187. 28 (1909), 210-216. Google Scholar |
[53] |
V. Umanskiy, On the solvability of the two dimensional $L_{p}$-Minkowski problem, Adv. Math., 225 (2010), 3214-3228. Google Scholar |
[54] |
T. Wang, On the discrete functional $L_{p}$ Minkowski problem, Int. Math. Res. Not. IMRN, (2015), 10563-10585.
doi: 10.1093/imrn/rnu256. |
[55] |
G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math., 262 (2014), 909-931.
doi: 10.1016/j.aim.2014.06.004. |
[56] |
G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom., 101 (2015), 159-174.
doi: 10.4310/jdg/1433975485. |
[57] |
G. Zhu, The $L_{p}$ Minkowski problem for polytopes for $0 < p < 1$, J. Funct. Anal., 269 (2015), 1070-1094.
doi: 10.1016/j.jfa.2015.05.007. |
[58] |
G. Zhu, The $L_{p}$ Minkowski problem for polytopes for $p < 0$, Indiana Univ. Math. J., 66 (2017), 1333-1350.
doi: 10.1512/iumj.2017.66.6110. |
show all references
References:
[1] |
J. Ai, K.-S. Chou and J. Wei,
Self-similar solutions for the anisotropic affine curve shortening problem, Calc. Var. Partial Differential Equations, 13 (2001), 311-337.
doi: 10.1007/s005260000075. |
[2] |
A. D. Aleksandrov, On the theory of mixed volumes. III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, Mat. Sbornik N.S., 3 (1938), 27-46; On the surface area measure of convex bodies, Mat. Sbornik N.S., 6 (1939), 167-174. Google Scholar |
[3] |
B. Andrews,
Gauss curvature flow: The fate of the rolling stones, Invent. Math., 138 (1999), 151-161.
doi: 10.1007/s002220050344. |
[4] |
B. Andrews, Classifications of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), 443-459.
doi: 10.1090/S0894-0347-02-00415-0. |
[5] |
M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners Existence Results via the variational approach, Springer-Verlag, London, 2011.
doi: 10.1007/978-0-85729-227-8. |
[6] |
K. J. B$\ddot{o}$r$\ddot{o}$czky, E. Lutwak, D. Yang and G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math., 231 (2012), 1974-1997.
doi: 10.1016/j.aim.2012.07.015. |
[7] |
K. J. B$\ddot{o}$r$\ddot{o}$czky, E. Lutwak, D. Yang and G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831-852.
doi: 10.1090/S0894-0347-2012-00741-3. |
[8] |
K. J. B$\ddot{o}$r$\ddot{o}$czky and H. T. Trinh, The planar $L_{p}$-Minkowski problem for $0 < p < 1$, Adv. Appl. Math., 87 (2017), 58-81.
doi: 10.1016/j.aam.2016.12.007. |
[9] |
L. Caffarelli, L. Nirenberg and J. Spruck, The Dirichlet problem for non-linear second order elliptic equations I. Monge-Amp$\grave{e}$re equation, Comm. Pure Appl. Math., 37 (1984), 369-402.
doi: 10.1002/cpa.3160370306. |
[10] |
E. Calabi, Improper affine hyperspheres of convex type and a generalization of a theorem by K. J$\ddot{o}$rgens, Michigan Math. J., 5 (1958), 105-126. |
[11] |
W. Chen, $L_{p}$ Minkowski problem with not necessarily positive data, Adv. Math., 201 (2006), 77-89.
doi: 10.1016/j.aim.2004.11.007. |
[12] |
S. Chen, Q. Li and G. Zhu, On the $L_{p}$ Monge-Amp$\grave{e}$re equation, J. Differential Equations, 263 (2017), 4997-5011.
doi: 10.1016/j.jde.2017.06.007. |
[13] |
S. Y. Cheng and S. T. Yau, On the regularity of the solution of the $n$-dimensional Minkowski problem, Comm. Pure Appl. Math., 29 (1976), 495-516.
doi: 10.1002/cpa.3160290504. |
[14] |
K.-S. Chou and X.-J. Wang, The $L_{p}$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33-83.
doi: 10.1016/j.aim.2005.07.004. |
[15] |
J. Dou and M. Zhu, The two dimensional $L_{p}$ Minkowski problem and nonlinear equations with negative exponents, Adv. Math., 230 (2012), 1209-1221.
doi: 10.1016/j.aim.2012.02.027. |
[16] |
W. Fenchel and B. Jessen, Mengenfunktionen und konvexe K$\ddot{o}$rper, Danske Vid. Selskab. Mat.-fys. Medd., 16 (1938), 1-31. Google Scholar |
[17] |
W. J. Firey, Shapes of worn stones, Mathematika, 21 (1974), 1-11.
doi: 10.1112/S0025579300005714. |
[18] |
M. Gage, Evolving planes curves by curvature in relative geometries, Duke Math. J., 72 (1993), 441-466. |
[19] |
M. Gage and Y. Li, Evolving planes curves by curvature in relative geometries, Duke Math. J., 75 (1994), 79-98. |
[20] |
C. Haberl, E. Lutwak, D. Yang and G. Zhang, The even Orlicz Minkowski problem, Adv. Math., 224 (2010), 2485-2510.
doi: 10.1016/j.aim.2010.02.006. |
[21] |
C. Haberl and F. E. Schuster, Asymmetric affine $L_{p}$ Sobolev inequalities, J. Funct. Anal., 257 (2009), 641-658.
doi: 10.1016/j.jfa.2009.04.009. |
[22] |
C. Haberl, F. E. Schuster and J. Xiao, An asymmetric affine P$\acute{o}$lya-Szeg$\ddot{o}$ principle, Math. Ann., 352 (2012), 517-542.
doi: 10.1007/s00208-011-0640-9. |
[23] |
Q. Huang and B. He, On the Orlicz Minkowski problem for polytopes, Discrete Comput. Geom., 48 (2012), 281-297.
doi: 10.1007/s00454-012-9434-4. |
[24] |
Y. Huang, J. Liu and L. Xu, On the uniqueness of the $L_{p}$ Minkowski problems: The constant $p$-curvature case in ${\mathbb{R}}^{3}$, Adv. Math., 281 (2015), 906-927.
doi: 10.1016/j.aim.2015.02.021. |
[25] |
D. Hug, E. Lutwak, D. Yang and G. Zhang, On the $L_{p}$ Minkowski problem for polytopes, Discrete Comput. Geom., 33 (2005), 699-715.
doi: 10.1007/s00454-004-1149-8. |
[26] |
M. N. Ivaki, A flow approach to the $L_{-2}$ Minkowski problem, Adv. Appl. Math., 50 (2013), 445-464.
doi: 10.1016/j.aam.2012.09.003. |
[27] |
H. Jian and J. Lu, Existence of solutions to the Orlicz-Minkowski problem, Adv. Math., 344 (2019), 262-288.
doi: 10.1016/j.aim.2019.01.004. |
[28] |
H. Jian, J. Lu and X.-J. Wang, Nonuniqueness of solutions to the $L_{p}$-Minkowski problem, Adv. Math., 281 (2015), 845-856.
doi: 10.1016/j.aim.2015.05.010. |
[29] |
M.-Y. Jiang, Remarks on the 2-dimensional $L_{p}$-Minkowski problem, Adv. Nonlinear Stud., 10 (2010), 297-313.
doi: 10.1515/ans-2010-0204. |
[30] |
H. Lewy, On differential geometry in the large, I (Minkowski's problem), Trans. Amer. Math. Soc., 43 (1938), 258-270.
doi: 10.2307/1990042. |
[31] |
M. Ludwig, General affine surface areas, Adv. Math., 224 (2010), 2346-2360.
doi: 10.1016/j.aim.2010.02.004. |
[32] |
M. Ludwig and M. Reitzner, A classification of $ {\rm{SL}} (n)$ invariant valuations, Ann. of Math., 172 (2010), 1219-1267.
doi: 10.4007/annals.2010.172.1219. |
[33] |
E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131-150.
doi: 10.4310/jdg/1214454097. |
[34] |
E. Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math., 118 (1996), 244-294.
doi: 10.1006/aima.1996.0022. |
[35] |
E. Lutwak and V. Oliker, On the regularity of solutions to a generalization of the Minkowski problem, J. Differential Geom., 41 (1995), 227-246.
doi: 10.4310/jdg/1214456011. |
[36] |
E. Lutwak, D. Yang and G. Zhang, On the $L_{p}$-Minkowski problem, Trans. Amer. Math. Soc., 356 (2004), 4359-4370.
doi: 10.1090/S0002-9947-03-03403-2. |
[37] |
E. Lutwak, D. Yang and G. Zhang, Optimal Sobolev norms and the $L_{p}$-Minkowski problem, Int. Math. Res. Not., (2006), Art. ID 62987, 21 pp.
doi: 10.1155/IMRN/2006/62987. |
[38] |
E. Lutwak, D. Yang and G. Zhang, Orlicz projection bodies, Adv. Math., 223 (2010), 220-242.
doi: 10.1016/j.aim.2009.08.002. |
[39] |
E. Lutwak, D. Yang and G. Zhang, Orlicz centroid bodies, J. Differential Geom., 84 (2010), 365-387.
doi: 10.4310/jdg/1274707317. |
[40] |
M. Meyer and E. Werner, On the $p$-affine surface area, Adv. Math., 152 (2000), 288-313.
doi: 10.1006/aima.1999.1902. |
[41] |
H. Minkowski, Volumen und oberfl$\ddot{a}$che, Math. Ann., 57 (1903), 447-495.
doi: 10.1007/BF01445180. |
[42] |
L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math., 6 (1953), 337-394.
doi: 10.1002/cpa.3160060303. |
[43] |
A. V. Pogorelov, The Minkowski Multidimensional Problem, V. H. Winston Sons, Washington D.C., 1978. |
[44] |
R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993.
doi: 10.1017/CBO9780511526282.![]() ![]() |
[45] |
C. Sch$\ddot{u}$tt and E. Werner, Surface bodies and $p$-affine surface area, Adv. Math., 187 (2004), 98-145.
doi: 10.1016/j.aim.2003.07.018. |
[46] |
A. Stancu, The discrete plannar $L_{0}$-Minkowski problem, Adv. Math., 167 (2002), 160-174.
doi: 10.1006/aima.2001.2040. |
[47] |
A. Stancu, On the number of solutions to the discrete two-dimensional $L_{0}$-Minkowski problem, Adv. Math., 180 (2003), 290-323.
doi: 10.1016/S0001-8708(03)00005-7. |
[48] |
M. Struwe, Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer-Verlag, Berlin, 2008 (Four edition). |
[49] |
Y. Sun, Existence and uniqueness of solutions to Orlicz Minkowski problems involving $0 <p<1$, Adv. Appl. Math., 101 (2018), 184-214. Google Scholar |
[50] |
Y. Sun and Y. Long, The planar Orlicz Minkowski problme in the $L^{1}$-sense, Adv. Math., 281 (2015), 1364-1383.
doi: 10.1016/j.aim.2015.03.032. |
[51] |
Y. Sun and D. Zhang, The planar Orlicz Minkowski problem for $p = 0$ without even assumptions, J. Geom. Anal., 29 (2019), 3384-3404.
doi: 10.1007/s12220-018-00114-x. |
[52] |
G. Tzitz$\acute{e}$ica, Sur une nouvelle classe de surfaces, Rend. Circ. Mat. Palermo, 25 (1908), 180-187. 28 (1909), 210-216. Google Scholar |
[53] |
V. Umanskiy, On the solvability of the two dimensional $L_{p}$-Minkowski problem, Adv. Math., 225 (2010), 3214-3228. Google Scholar |
[54] |
T. Wang, On the discrete functional $L_{p}$ Minkowski problem, Int. Math. Res. Not. IMRN, (2015), 10563-10585.
doi: 10.1093/imrn/rnu256. |
[55] |
G. Zhu, The logarithmic Minkowski problem for polytopes, Adv. Math., 262 (2014), 909-931.
doi: 10.1016/j.aim.2014.06.004. |
[56] |
G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differential Geom., 101 (2015), 159-174.
doi: 10.4310/jdg/1433975485. |
[57] |
G. Zhu, The $L_{p}$ Minkowski problem for polytopes for $0 < p < 1$, J. Funct. Anal., 269 (2015), 1070-1094.
doi: 10.1016/j.jfa.2015.05.007. |
[58] |
G. Zhu, The $L_{p}$ Minkowski problem for polytopes for $p < 0$, Indiana Univ. Math. J., 66 (2017), 1333-1350.
doi: 10.1512/iumj.2017.66.6110. |
[1] |
Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems & Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271 |
[2] |
Grace Nnennaya Ogwo, Chinedu Izuchukwu, Oluwatosin Temitope Mewomo. A modified extragradient algorithm for a certain class of split pseudo-monotone variational inequality problem. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021011 |
[3] |
Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031 |
[4] |
Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056 |
[5] |
Mohsen Abdolhosseinzadeh, Mir Mohammad Alipour. Design of experiment for tuning parameters of an ant colony optimization method for the constrained shortest Hamiltonian path problem in the grid networks. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 321-332. doi: 10.3934/naco.2020028 |
[6] |
Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827 |
[7] |
Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709 |
[8] |
Joel Fotso Tachago, Giuliano Gargiulo, Hubert Nnang, Elvira Zappale. Multiscale homogenization of integral convex functionals in Orlicz Sobolev setting. Evolution Equations & Control Theory, 2021, 10 (2) : 297-320. doi: 10.3934/eect.2020067 |
[9] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. A full-modified-Newton step $ O(n) $ infeasible interior-point method for the special weighted linear complementarity problem. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021082 |
[10] |
Philippe G. Lefloch, Cristinel Mardare, Sorin Mardare. Isometric immersions into the Minkowski spacetime for Lorentzian manifolds with limited regularity. Discrete & Continuous Dynamical Systems, 2009, 23 (1&2) : 341-365. doi: 10.3934/dcds.2009.23.341 |
[11] |
Zhenbing Gong, Yanping Chen, Wenyu Tao. Jump and variational inequalities for averaging operators with variable kernels. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021045 |
[12] |
Qiao Liu. Partial regularity and the Minkowski dimension of singular points for suitable weak solutions to the 3D simplified Ericksen–Leslie system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021041 |
[13] |
Xue-Ping Luo, Yi-Bin Xiao, Wei Li. Strict feasibility of variational inclusion problems in reflexive Banach spaces. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2495-2502. doi: 10.3934/jimo.2019065 |
[14] |
Livia Betz, Irwin Yousept. Optimal control of elliptic variational inequalities with bounded and unbounded operators. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021009 |
[15] |
Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209 |
[16] |
Tao Wang. Variational relations for metric mean dimension and rate distortion dimension. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021050 |
[17] |
Chiun-Chuan Chen, Hung-Yu Chien, Chih-Chiang Huang. A variational approach to three-phase traveling waves for a gradient system. Discrete & Continuous Dynamical Systems, 2021 doi: 10.3934/dcds.2021055 |
[18] |
Jianxun Liu, Shengjie Li, Yingrang Xu. Quantitative stability of the ERM formulation for a class of stochastic linear variational inequalities. Journal of Industrial & Management Optimization, 2021 doi: 10.3934/jimo.2021083 |
[19] |
Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021100 |
[20] |
Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control & Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022 |
2019 Impact Factor: 1.233
Tools
Article outline
[Back to Top]