This paper deals with the fractional Schrödinger-Poisson system
$ \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}(-\Delta )^su+V(x)u+K(x)\phi u = |u|^{2_{s}^{*}-2}u, & \text{in}\ {\Bbb R}^3,\\ (-\Delta)^{t}\phi = K(x)u^2, & \text{in}\ {\Bbb R}^3, \end{array} \right. \end{equation*} $
where $ s\in (\frac{3}{4}, 1) $, $ t\in(0, 1) $, $ \varepsilon $ is a positive parameter, $ 2_{s}^{*} = \frac{6}{3-2s} $ is the critical Sobolev exponent. $ K(x)\in L^{\frac{6}{2t+4s-3}}({\Bbb R}^3) $, $ V(x)\in L^{\frac{3}{2s}}({\Bbb R}^3) $ and $ V(x) $ is assumed to be zero in some region of $ {\Bbb R}^3 $, which means that the problem is of the critical frequency case. In virtue of a global compactness result in fractional Sobolev space and Lusternik-Schnirelman theory of critical points, we succeed in proving the multiplicity of bound states.
Citation: |
[1] |
A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.
doi: 10.1142/S021919970800282X.![]() ![]() ![]() |
[2] |
A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.
doi: 10.1016/j.anihpc.2009.11.012.![]() ![]() ![]() |
[3] |
A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.
doi: 10.1016/j.jmaa.2008.03.057.![]() ![]() ![]() |
[4] |
V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{(N+2)/(N-2)}$ in ${\Bbb R}^N$, J. Funct. Anal., 88 (1990), 90-117.
doi: 10.1016/0022-1236(90)90120-A.![]() ![]() ![]() |
[5] |
V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.
doi: 10.12775/TMNA.1998.019.![]() ![]() ![]() |
[6] |
G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103-3119.
doi: 10.1088/0951-7715/29/10/3103.![]() ![]() ![]() |
[7] |
J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math., 57 (2000), 273-284.
![]() ![]() |
[8] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[9] |
T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.
doi: 10.1515/ans-2004-0305.![]() ![]() ![]() |
[10] |
T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.
doi: 10.1017/S030821050000353X.![]() ![]() ![]() |
[11] |
T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.
doi: 10.1137/S0036141004442793.![]() ![]() ![]() |
[12] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[13] |
R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.
doi: 10.1007/s00526-009-0302-x.![]() ![]() ![]() |
[14] |
R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Oper. Theory Adv. Appl., 219 (2012), 55-67.
doi: 10.1007/978-3-0348-0263-5_4.![]() ![]() ![]() |
[15] |
L. Guo and Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent, J. Math. Phys., 61 (2020), 121501, 20 pp.
doi: 10.1063/5.0013475.![]() ![]() ![]() |
[16] |
I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.
doi: 10.1515/ans-2008-0305.![]() ![]() ![]() |
[17] |
G. Li, S. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.
doi: 10.1142/S0219199710004068.![]() ![]() ![]() |
[18] |
E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.
doi: 10.2307/2007032.![]() ![]() ![]() |
[19] |
Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.
doi: 10.1051/cocv/2016063.![]() ![]() ![]() |
[20] |
E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.
![]() ![]() |
[21] |
D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.
doi: 10.1016/j.jfa.2006.04.005.![]() ![]() ![]() |
[22] |
D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011), 253-271.
doi: 10.4171/RMI/635.![]() ![]() ![]() |
[23] |
K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.
doi: 10.1016/j.jde.2016.05.022.![]() ![]() ![]() |
[24] |
K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.
doi: 10.1002/mma.5289.![]() ![]() ![]() |
[25] |
M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996.
doi: 10.1007/978-1-4612-4146-1.![]() ![]() ![]() |
[26] |
Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 116, 25 pp.
doi: 10.1007/s00526-017-1199-4.![]() ![]() ![]() |
[27] |
J. Zhang, J. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.
doi: 10.1515/ans-2015-5024.![]() ![]() ![]() |
[28] |
H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), Paper No. 5, 15 pp.
doi: 10.1007/s00033-019-1226-8.![]() ![]() ![]() |
[29] |
H. Zhang and F. Zhang, Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency, Nonlinear Anal., 190 (2020), 111599, 15pp.
doi: 10.1016/j.na.2019.111599.![]() ![]() ![]() |
[30] |
L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.
doi: 10.1016/j.jmaa.2008.04.053.![]() ![]() ![]() |