doi: 10.3934/dcdss.2021038

Bound states for fractional Schrödinger-Poisson system with critical exponent

School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China

* Corresponding author: Shuangjie Peng

Received  December 2020 Revised  January 2021 Published  March 2021

Fund Project: The first author is supported by funding for basic research business in Central Universities (innovative funding projects) (2020CXZZ069). The second author is supported by NSFC grant 1207116

This paper deals with the fractional Schrödinger-Poisson system
$ \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}(-\Delta )^su+V(x)u+K(x)\phi u = |u|^{2_{s}^{*}-2}u, & \text{in}\ {\Bbb R}^3,\\ (-\Delta)^{t}\phi = K(x)u^2, & \text{in}\ {\Bbb R}^3, \end{array} \right. \end{equation*} $
where
$ s\in (\frac{3}{4}, 1) $
,
$ t\in(0, 1) $
,
$ \varepsilon $
is a positive parameter,
$ 2_{s}^{*} = \frac{6}{3-2s} $
is the critical Sobolev exponent.
$ K(x)\in L^{\frac{6}{2t+4s-3}}({\Bbb R}^3) $
,
$ V(x)\in L^{\frac{3}{2s}}({\Bbb R}^3) $
and
$ V(x) $
is assumed to be zero in some region of
$ {\Bbb R}^3 $
, which means that the problem is of the critical frequency case. In virtue of a global compactness result in fractional Sobolev space and Lusternik-Schnirelman theory of critical points, we succeed in proving the multiplicity of bound states.
Citation: Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021038
References:
[1]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.  Google Scholar

[2]

A. AzzolliniP. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.  doi: 10.1016/j.anihpc.2009.11.012.  Google Scholar

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[4]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{(N+2)/(N-2)}$ in ${\Bbb R}^N$, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar

[5]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar

[6]

G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103-3119.  doi: 10.1088/0951-7715/29/10/3103.  Google Scholar

[7]

J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math., 57 (2000), 273-284.   Google Scholar

[8]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.  Google Scholar

[10]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.  doi: 10.1017/S030821050000353X.  Google Scholar

[11]

T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.  doi: 10.1137/S0036141004442793.  Google Scholar

[12]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar

[14]

R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Oper. Theory Adv. Appl., 219 (2012), 55-67.  doi: 10.1007/978-3-0348-0263-5_4.  Google Scholar

[15]

L. Guo and Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent, J. Math. Phys., 61 (2020), 121501, 20 pp. doi: 10.1063/5.0013475.  Google Scholar

[16]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar

[17]

G. LiS. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.  Google Scholar

[18]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[19]

Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.  doi: 10.1051/cocv/2016063.  Google Scholar

[20]

E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.   Google Scholar

[21]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[22]

D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.  Google Scholar

[23]

K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.  Google Scholar

[24]

K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar

[25]

M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[26]

Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 116, 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar

[27]

J. ZhangJ. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.  Google Scholar

[28]

H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), Paper No. 5, 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar

[29]

H. Zhang and F. Zhang, Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency, Nonlinear Anal., 190 (2020), 111599, 15pp. doi: 10.1016/j.na.2019.111599.  Google Scholar

[30]

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.  Google Scholar

[2]

A. AzzolliniP. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.  doi: 10.1016/j.anihpc.2009.11.012.  Google Scholar

[3]

A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar

[4]

V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{(N+2)/(N-2)}$ in ${\Bbb R}^N$, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar

[5]

V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar

[6]

G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103-3119.  doi: 10.1088/0951-7715/29/10/3103.  Google Scholar

[7]

J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math., 57 (2000), 273-284.   Google Scholar

[8]

W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar

[9]

T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.  Google Scholar

[10]

T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.  doi: 10.1017/S030821050000353X.  Google Scholar

[11]

T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.  doi: 10.1137/S0036141004442793.  Google Scholar

[12]

E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar

[13]

R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar

[14]

R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Oper. Theory Adv. Appl., 219 (2012), 55-67.  doi: 10.1007/978-3-0348-0263-5_4.  Google Scholar

[15]

L. Guo and Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent, J. Math. Phys., 61 (2020), 121501, 20 pp. doi: 10.1063/5.0013475.  Google Scholar

[16]

I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar

[17]

G. LiS. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.  Google Scholar

[18]

E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar

[19]

Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.  doi: 10.1051/cocv/2016063.  Google Scholar

[20]

E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.   Google Scholar

[21]

D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar

[22]

D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.  Google Scholar

[23]

K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.  Google Scholar

[24]

K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar

[25]

M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[26]

Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 116, 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar

[27]

J. ZhangJ. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.  Google Scholar

[28]

H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), Paper No. 5, 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar

[29]

H. Zhang and F. Zhang, Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency, Nonlinear Anal., 190 (2020), 111599, 15pp. doi: 10.1016/j.na.2019.111599.  Google Scholar

[30]

L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

[1]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

[2]

Kuan-Hsiang Wang. An eigenvalue problem for nonlinear Schrödinger-Poisson system with steep potential well. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021030

[3]

Daniele Cassani, Luca Vilasi, Jianjun Zhang. Concentration phenomena at saddle points of potential for Schrödinger-Poisson systems. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021039

[4]

Fangyi Qin, Jun Wang, Jing Yang. Infinitely many positive solutions for Schrödinger-poisson systems with nonsymmetry potentials. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021054

[5]

Juntao Sun, Tsung-fang Wu. The number of nodal solutions for the Schrödinger–Poisson system under the effect of the weight function. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3651-3682. doi: 10.3934/dcds.2021011

[6]

Maoding Zhen, Binlin Zhang, Xiumei Han. A new approach to get solutions for Kirchhoff-type fractional Schrödinger systems involving critical exponents. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021115

[7]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[8]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1693-1716. doi: 10.3934/dcdss.2020450

[9]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[10]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[11]

Amit Goswami, Sushila Rathore, Jagdev Singh, Devendra Kumar. Analytical study of fractional nonlinear Schrödinger equation with harmonic oscillator. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021021

[12]

Yanqin Fang, Jihui Zhang. Multiplicity of solutions for the nonlinear Schrödinger-Maxwell system. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1267-1279. doi: 10.3934/cpaa.2011.10.1267

[13]

Jinyi Sun, Zunwei Fu, Yue Yin, Minghua Yang. Global existence and Gevrey regularity to the Navier-Stokes-Nernst-Planck-Poisson system in critical Besov-Morrey spaces. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3409-3425. doi: 10.3934/dcdsb.2020237

[14]

Brahim Alouini. Finite dimensional global attractor for a class of two-coupled nonlinear fractional Schrödinger equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021013

[15]

Umberto Biccari. Internal control for a non-local Schrödinger equation involving the fractional Laplace operator. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021014

[16]

Claudianor O. Alves, Giovany M. Figueiredo, Riccardo Molle. Multiple positive bound state solutions for a critical Choquard equation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021061

[17]

Kazuhiro Kurata, Yuki Osada. Variational problems associated with a system of nonlinear Schrödinger equations with three wave interaction. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021100

[18]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[19]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[20]

Chenjie Fan, Zehua Zhao. Decay estimates for nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3973-3984. doi: 10.3934/dcds.2021024

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (42)
  • HTML views (48)
  • Cited by (0)

Other articles
by authors

[Back to Top]