# American Institute of Mathematical Sciences

• Previous Article
Nontrivial solutions for the fractional Laplacian problems without asymptotic limits near both infinity and zero
• DCDS-S Home
• This Issue
• Next Article
Multi-bubble nodal solutions to slightly subcritical elliptic problems with Hardy terms in symmetric domains
June  2021, 14(6): 1819-1835. doi: 10.3934/dcdss.2021038

## Bound states for fractional Schrödinger-Poisson system with critical exponent

 School of Mathematics and Statistics & Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan 430079, China

* Corresponding author: Shuangjie Peng

Received  December 2020 Revised  January 2021 Published  June 2021 Early access  March 2021

Fund Project: The first author is supported by funding for basic research business in Central Universities (innovative funding projects) (2020CXZZ069). The second author is supported by NSFC grant 1207116

This paper deals with the fractional Schrödinger-Poisson system
 $\begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}(-\Delta )^su+V(x)u+K(x)\phi u = |u|^{2_{s}^{*}-2}u, & \text{in}\ {\Bbb R}^3,\\ (-\Delta)^{t}\phi = K(x)u^2, & \text{in}\ {\Bbb R}^3, \end{array} \right. \end{equation*}$
where
 $s\in (\frac{3}{4}, 1)$
,
 $t\in(0, 1)$
,
 $\varepsilon$
is a positive parameter,
 $2_{s}^{*} = \frac{6}{3-2s}$
is the critical Sobolev exponent.
 $K(x)\in L^{\frac{6}{2t+4s-3}}({\Bbb R}^3)$
,
 $V(x)\in L^{\frac{3}{2s}}({\Bbb R}^3)$
and
 $V(x)$
is assumed to be zero in some region of
 ${\Bbb R}^3$
, which means that the problem is of the critical frequency case. In virtue of a global compactness result in fractional Sobolev space and Lusternik-Schnirelman theory of critical points, we succeed in proving the multiplicity of bound states.
Citation: Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038
##### References:
 [1] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.  Google Scholar [2] A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.  doi: 10.1016/j.anihpc.2009.11.012.  Google Scholar [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar [4] V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{(N+2)/(N-2)}$ in ${\Bbb R}^N$, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar [5] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar [6] G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103-3119.  doi: 10.1088/0951-7715/29/10/3103.  Google Scholar [7] J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math., 57 (2000), 273-284.   Google Scholar [8] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar [9] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.  Google Scholar [10] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.  doi: 10.1017/S030821050000353X.  Google Scholar [11] T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.  doi: 10.1137/S0036141004442793.  Google Scholar [12] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar [13] R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar [14] R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Oper. Theory Adv. Appl., 219 (2012), 55-67.  doi: 10.1007/978-3-0348-0263-5_4.  Google Scholar [15] L. Guo and Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent, J. Math. Phys., 61 (2020), 121501, 20 pp. doi: 10.1063/5.0013475.  Google Scholar [16] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar [17] G. Li, S. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.  Google Scholar [18] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar [19] Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.  doi: 10.1051/cocv/2016063.  Google Scholar [20] E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.   Google Scholar [21] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar [22] D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.  Google Scholar [23] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.  Google Scholar [24] K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar [25] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar [26] Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 116, 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar [27] J. Zhang, J. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.  Google Scholar [28] H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), Paper No. 5, 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar [29] H. Zhang and F. Zhang, Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency, Nonlinear Anal., 190 (2020), 111599, 15pp. doi: 10.1016/j.na.2019.111599.  Google Scholar [30] L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar

show all references

##### References:
 [1] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.  Google Scholar [2] A. Azzollini, P. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.  doi: 10.1016/j.anihpc.2009.11.012.  Google Scholar [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.  Google Scholar [4] V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{(N+2)/(N-2)}$ in ${\Bbb R}^N$, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.  Google Scholar [5] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.  Google Scholar [6] G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103-3119.  doi: 10.1088/0951-7715/29/10/3103.  Google Scholar [7] J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math., 57 (2000), 273-284.   Google Scholar [8] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.  Google Scholar [9] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.  Google Scholar [10] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.  doi: 10.1017/S030821050000353X.  Google Scholar [11] T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.  doi: 10.1137/S0036141004442793.  Google Scholar [12] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.  Google Scholar [13] R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.  Google Scholar [14] R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Oper. Theory Adv. Appl., 219 (2012), 55-67.  doi: 10.1007/978-3-0348-0263-5_4.  Google Scholar [15] L. Guo and Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent, J. Math. Phys., 61 (2020), 121501, 20 pp. doi: 10.1063/5.0013475.  Google Scholar [16] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.  Google Scholar [17] G. Li, S. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.  Google Scholar [18] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.  Google Scholar [19] Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.  doi: 10.1051/cocv/2016063.  Google Scholar [20] E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.   Google Scholar [21] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.  Google Scholar [22] D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.  Google Scholar [23] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.  Google Scholar [24] K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.  Google Scholar [25] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar [26] Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 116, 25 pp. doi: 10.1007/s00526-017-1199-4.  Google Scholar [27] J. Zhang, J. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.  Google Scholar [28] H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), Paper No. 5, 15 pp. doi: 10.1007/s00033-019-1226-8.  Google Scholar [29] H. Zhang and F. Zhang, Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency, Nonlinear Anal., 190 (2020), 111599, 15pp. doi: 10.1016/j.na.2019.111599.  Google Scholar [30] L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.  Google Scholar
 [1] Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165 [2] Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025 [3] Lirong Huang, Jianqing Chen. Existence and asymptotic behavior of bound states for a class of nonautonomous Schrödinger-Poisson system. Electronic Research Archive, 2020, 28 (1) : 383-404. doi: 10.3934/era.2020022 [4] Xinsheng Du, Qi Li, Zengqin Zhao, Gen Li. Bound state solutions for fractional Schrödinger-Poisson systems. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021023 [5] Xiaoping Chen, Chunlei Tang. Least energy sign-changing solutions for Schrödinger-Poisson system with critical growth. Communications on Pure & Applied Analysis, 2021, 20 (6) : 2291-2312. doi: 10.3934/cpaa.2021077 [6] Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $\mathbb{R} ^{3}$. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079 [7] Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266 [8] Chunhua Wang, Jing Yang. Positive solutions for a nonlinear Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems, 2018, 38 (11) : 5461-5504. doi: 10.3934/dcds.2018241 [9] Miao-Miao Li, Chun-Lei Tang. Multiple positive solutions for Schrödinger-Poisson system in $\mathbb{R}^{3}$ involving concave-convex nonlinearities with critical exponent. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1587-1602. doi: 10.3934/cpaa.2017076 [10] Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, 2021, 29 (3) : 2475-2488. doi: 10.3934/era.2020125 [11] Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867 [12] Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$\ddot{\mbox{o}}$dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104 [13] Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064 [14] Mingzheng Sun, Jiabao Su, Leiga Zhao. Infinitely many solutions for a Schrödinger-Poisson system with concave and convex nonlinearities. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 427-440. doi: 10.3934/dcds.2015.35.427 [15] Claudianor O. Alves, Minbo Yang. Existence of positive multi-bump solutions for a Schrödinger-Poisson system in $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 5881-5910. doi: 10.3934/dcds.2016058 [16] Margherita Nolasco. Breathing modes for the Schrödinger-Poisson system with a multiple--well external potential. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1411-1419. doi: 10.3934/cpaa.2010.9.1411 [17] Qiangchang Ju, Fucai Li, Hailiang Li. Asymptotic limit of nonlinear Schrödinger-Poisson system with general initial data. Kinetic & Related Models, 2011, 4 (3) : 767-783. doi: 10.3934/krm.2011.4.767 [18] Amna Dabaa, O. Goubet. Long time behavior of solutions to a Schrödinger-Poisson system in $R^3$. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1743-1756. doi: 10.3934/cpaa.2016011 [19] Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329 [20] Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1631-1648. doi: 10.3934/dcdss.2020447

2020 Impact Factor: 2.425