Advanced Search
Article Contents
Article Contents

Bound states for fractional Schrödinger-Poisson system with critical exponent

  • * Corresponding author: Shuangjie Peng

    * Corresponding author: Shuangjie Peng
The first author is supported by funding for basic research business in Central Universities (innovative funding projects) (2020CXZZ069). The second author is supported by NSFC grant 1207116
Abstract Full Text(HTML) Related Papers Cited by
  • This paper deals with the fractional Schrödinger-Poisson system

    $ \begin{equation*} \left\{ \begin{array}{ll} \varepsilon^{2s}(-\Delta )^su+V(x)u+K(x)\phi u = |u|^{2_{s}^{*}-2}u, & \text{in}\ {\Bbb R}^3,\\ (-\Delta)^{t}\phi = K(x)u^2, & \text{in}\ {\Bbb R}^3, \end{array} \right. \end{equation*} $

    where $ s\in (\frac{3}{4}, 1) $, $ t\in(0, 1) $, $ \varepsilon $ is a positive parameter, $ 2_{s}^{*} = \frac{6}{3-2s} $ is the critical Sobolev exponent. $ K(x)\in L^{\frac{6}{2t+4s-3}}({\Bbb R}^3) $, $ V(x)\in L^{\frac{3}{2s}}({\Bbb R}^3) $ and $ V(x) $ is assumed to be zero in some region of $ {\Bbb R}^3 $, which means that the problem is of the critical frequency case. In virtue of a global compactness result in fractional Sobolev space and Lusternik-Schnirelman theory of critical points, we succeed in proving the multiplicity of bound states.

    Mathematics Subject Classification: Primary: 35J47, 35J50.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] A. Ambrosetti and D. Ruiz, Multiple bound states for the Schrödinger-Poisson problem, Commun. Contemp. Math., 10 (2008), 391-404.  doi: 10.1142/S021919970800282X.
    [2] A. AzzolliniP. d'Avenia and A. Pomponio, On the Schrödinger-Maxwell equations under the effect of a general nonlinear term, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27 (2010), 779-791.  doi: 10.1016/j.anihpc.2009.11.012.
    [3] A. Azzollini and A. Pomponio, Ground state solutions for the nonlinear Schrödinger-Maxwell equations, J. Math. Anal. Appl., 345 (2008), 90-108.  doi: 10.1016/j.jmaa.2008.03.057.
    [4] V. Benci and G. Cerami, Existence of positive solutions of the equation $-\Delta u+a(x)u = u^{(N+2)/(N-2)}$ in ${\Bbb R}^N$, J. Funct. Anal., 88 (1990), 90-117.  doi: 10.1016/0022-1236(90)90120-A.
    [5] V. Benci and D. Fortunato, An eigenvalue problem for the Schrödinger-Maxwell equations, Topol. Methods Nonlinear Anal., 11 (1998), 283-293.  doi: 10.12775/TMNA.1998.019.
    [6] G. Cerami and R. Molle, Positive bound state solutions for some Schrödinger-Poisson systems, Nonlinearity, 29 (2016), 3103-3119.  doi: 10.1088/0951-7715/29/10/3103.
    [7] J. Chabrowski and J. Yang, Multiple semiclassical solutions of the Schrödinger equation involving a critical Sobolev exponent, Portugal. Math., 57 (2000), 273-284. 
    [8] W. ChenC. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.  doi: 10.1002/cpa.20116.
    [9] T. D'Aprile and D. Mugnai, Non-existence results for the coupled Klein-Gordon-Maxwell equations, Adv. Nonlinear Stud., 4 (2004), 307-322.  doi: 10.1515/ans-2004-0305.
    [10] T. D'Aprile and D. Mugnai, Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell equations, Proc. Roy. Soc. Edinburgh Sect. A, 134 (2004), 893-906.  doi: 10.1017/S030821050000353X.
    [11] T. D'Aprile and J. Wei, On bound states concentrating on spheres for the Maxwell-Schrödinger equation, SIAM J. Math. Anal., 37 (2005), 321-342.  doi: 10.1137/S0036141004442793.
    [12] E. Di NezzaG. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.  doi: 10.1016/j.bulsci.2011.12.004.
    [13] R. L. Frank and E. H. Lieb, Inversion positivity and the sharp Hardy-Littlewood-Sobolev inequality, Calc. Var. Partial Differential Equations, 39 (2010), 85-99.  doi: 10.1007/s00526-009-0302-x.
    [14] R. L. Frank and E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality, Oper. Theory Adv. Appl., 219 (2012), 55-67.  doi: 10.1007/978-3-0348-0263-5_4.
    [15] L. Guo and Q. Li, Multiple bound state solutions for fractional Choquard equation with Hardy-Littlewood-Sobolev critical exponent, J. Math. Phys., 61 (2020), 121501, 20 pp. doi: 10.1063/5.0013475.
    [16] I. Ianni and G. Vaira, On concentration of positive bound states for the Schrödinger-Poisson problem with potentials, Adv. Nonlinear Stud., 8 (2008), 573-595.  doi: 10.1515/ans-2008-0305.
    [17] G. LiS. Peng and S. Yan, Infinitely many positive solutions for the nonlinear Schrödinger-Poisson system, Commun. Contemp. Math., 12 (2010), 1069-1092.  doi: 10.1142/S0219199710004068.
    [18] E. H. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math. (2), 118 (1983), 349-374.  doi: 10.2307/2007032.
    [19] Z. Liu and J. Zhang, Multiplicity and concentration of positive solutions for the fractional Schrödinger-Poisson systems with critical growth, ESAIM Control Optim. Calc. Var., 23 (2017), 1515-1542.  doi: 10.1051/cocv/2016063.
    [20] E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258. 
    [21] D. Ruiz, The Schrödinger-Poisson equation under the effect of a nonlinear local term, J. Funct. Anal., 237 (2006), 655-674.  doi: 10.1016/j.jfa.2006.04.005.
    [22] D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimum of the potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.
    [23] K. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.
    [24] K. Teng and R. P. Agarwal, Existence and concentration of positive ground state solutions for nonlinear fractional Schrödinger-Poisson system with critical growth, Math. Methods Appl. Sci., 41 (2018), 8258-8293.  doi: 10.1002/mma.5289.
    [25] M. Willem, Minimax Theorems, Birkhäuser Boston, Inc., Boston, MA, 1996. doi: 10.1007/978-1-4612-4146-1.
    [26] Y. Yu, F. Zhao and L. Zhao, The concentration behavior of ground state solutions for a fractional Schrödinger-Poisson system, Calc. Var. Partial Differential Equations, 56 (2017), Paper No. 116, 25 pp. doi: 10.1007/s00526-017-1199-4.
    [27] J. ZhangJ. M. do Ó and M. Squassina, Fractional Schrödinger-Poisson systems with a general subcritical or critical nonlinearity, Adv. Nonlinear Stud., 16 (2016), 15-30.  doi: 10.1515/ans-2015-5024.
    [28] H. Zhang, J. Xu and F. Zhang, Multiplicity of semiclassical states for Schrödinger-Poisson systems with critical frequency, Z. Angew. Math. Phys., 71 (2020), Paper No. 5, 15 pp. doi: 10.1007/s00033-019-1226-8.
    [29] H. Zhang and F. Zhang, Multiplicity of semiclassical states for fractional Schrödinger equations with critical frequency, Nonlinear Anal., 190 (2020), 111599, 15pp. doi: 10.1016/j.na.2019.111599.
    [30] L. Zhao and F. Zhao, On the existence of solutions for the Schrödinger-Poisson equations, J. Math. Anal. Appl., 346 (2008), 155-169.  doi: 10.1016/j.jmaa.2008.04.053.
  • 加载中

Article Metrics

HTML views(361) PDF downloads(343) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint