August  2021, 14(8): 2947-2974. doi: 10.3934/dcdss.2021040

Large-time existence for one-dimensional Green-Naghdi equations with vorticity

1. 

LAMA, Univ Paris Est Creteil, Univ Gustave Eiffel, CNRS, F-94010, Créteil, France

2. 

Mathématiques, Faculté des sciences I et Laboratoire de mathématiques, École doctorale des sciences et technologie, Université Libanaise, Beyrouth, Liban

* Corresponding author: Raafat Talhouk

Received  June 2020 Revised  March 2021 Published  August 2021 Early access  April 2021

This essay is concerned with the one-dimensional Green-Naghdi equations in the presence of a non-zero vorticity according to the derivation in [5], and with the addition of a small surface tension. The Green-Naghdi system is first rewritten as an equivalent system by using an adequate change of unknowns. We show that solutions to this model may be obtained by a standard Picard iterative scheme. No loss of regularity is involved with respect to the initial data. Moreover solutions exist at the same level of regularity as for first order hyperbolic symmetric systems, i.e. with a regularity in Sobolev spaces of order $ s>3/2 $.

Citation: Colette Guillopé, Samer Israwi, Raafat Talhouk. Large-time existence for one-dimensional Green-Naghdi equations with vorticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2947-2974. doi: 10.3934/dcdss.2021040
References:
[1]

S. Alinhac and P. Gérard, Opérateurs Pseudo-différentiels et Théorème de Nash-Moser, Savoirs Actuels, InterEditions, Paris; Éditions du Centre national de la recherche scientifique, Meudon, 1991.  Google Scholar

[2]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541.  doi: 10.1007/s00222-007-0088-4.  Google Scholar

[3]

S. V. Basenkova, N. N. Morozov and O. P. Pogutse, Dispersive effects in two-dimensional hydrodynamics, Dokl. Akad. Nauk, 293 (1985), 818–822 (transl. Sov. Phys. Dokl., 32 (1987), 262–264). Google Scholar

[4]

P. BonnetonF. ChazelD. LannesF. Marche and M. Tissier, A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230 (2011), 1479-1498.  doi: 10.1016/j.jcp.2010.11.015.  Google Scholar

[5]

A. Castro and D. Lannes, Fully nonlinear long-wave models in the presence of vorticity, J. Fluid Mech., 759 (2014), 642-675.  doi: 10.1017/jfm.2014.593.  Google Scholar

[6]

A. Castro and D. Lannes, Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity, Indiana Univ. Math. J., 64 (2015), 1169-1270.  doi: 10.1512/iumj.2015.64.5606.  Google Scholar

[7]

Q. ChenJ. T. KirbyR. A. DalrympleA. B. Kennedy and A. Chawla, Boussinesq modeling of wave transformation, breaking, and runup, Part II: Two horizontal dimensions, J. Waterway Port Coastal Ocean Engrg., 126 (2000), 48-56.  doi: 10.1061/(ASCE)0733-950X(2000)126:1(48).  Google Scholar

[8]

Q. ChenJ. T. KirbyR. A. DalrympleF. Shi and E. B. Thornton, Boussinesq modeling of longshore currents, J. Geophys. Res., 108 (2003), 3362-3379.  doi: 10.1029/2002JC001308.  Google Scholar

[9]

R. CienfuegosE. Barthélemy and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part I: Model development and analysis, Int. J. Numer. Meth. Fluids, 51 (2006), 1217-1253.  doi: 10.1002/fld.1141.  Google Scholar

[10]

V. Duchêne and S. Israwi, Well-posedness of the Green-Naghdi and Boussinesq-Peregrine systems, Ann. Math. Blaise Pascal, 25 (2018), 21-74.  doi: 10.5802/ambp.372.  Google Scholar

[11]

V. DuchêneS. Israwi and R. Talhouk, A new fully justified asymptotic model for the propagation of internal waves in the Camassa-Holm regime, SIAM J. Math. Anal., 47 (2015), 240-290.  doi: 10.1137/130947064.  Google Scholar

[12]

V. DuchêneS. Israwi and R. Talhouk, A new class of two-layer Green-Naghdi systems with improved frequency dispersion, Stud. Appl. Math., 137 (2016), 356-415.  doi: 10.1111/sapm.12125.  Google Scholar

[13]

D. DutykhD. ClamondP. Milewski and D. Mitsotakis, Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, European J. Appl. Math., 24 (2013), 761-787.  doi: 10.1017/S0956792513000168.  Google Scholar

[14]

A. E. GreenN. Laws and P. M. Naghdi, On the theory of water waves, Proc. Royal Soc. London Ser. A, 338 (1974), 43-55.  doi: 10.1098/rspa.1974.0072.  Google Scholar

[15]

A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.  doi: 10.1017/S0022112076002425.  Google Scholar

[16]

T. Iguchi, A shallow water approximation for water waves, J. Math. Kyoto Univ., 49 (2009), 13-55.  doi: 10.1215/kjm/1248983028.  Google Scholar

[17]

S. Israwi, Large time existence for 1D Green-Naghdi equations, Nonlinear Anal., 74 (2011), 81-93.  doi: 10.1016/j.na.2010.08.019.  Google Scholar

[18]

S. Israwi and H. Kalisch, Approximate conservation laws in the KdV equation, Phys. Lett. A, 383 (2019), 854-858.  doi: 10.1016/j.physleta.2018.12.009.  Google Scholar

[19]

T. Kano and T. Nishida, Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ., 19 (1979), 335-370.  doi: 10.1215/kjm/1250522437.  Google Scholar

[20]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[21]

M. KazoleaA. I. DelisI. K. Nikolos and C. E. Synolakis, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Eng., 69 (2012), 42-66.  doi: 10.1016/j.coastaleng.2012.05.008.  Google Scholar

[22]

D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal., 232 (2006), 495-539.  doi: 10.1016/j.jfa.2005.07.003.  Google Scholar

[23]

D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Phys. Fluids, 21 (2009), 016601. doi: 10.1063/1.3053183.  Google Scholar

[24]

D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations, J. Comput. Physics, 282 (2015), 238-268.  doi: 10.1016/j.jcp.2014.11.016.  Google Scholar

[25]

O. Le MétayerS. Gavrilyuk and S. Hank, A numerical scheme for the Green-Naghdi model, J. Comp. Phys., 229 (2010), 2034-2045.  doi: 10.1016/j.jcp.2009.11.021.  Google Scholar

[26]

Y. A. Li, A shallow-water approximation to the full water wave problem, Comm. Pure Appl. Math., 59 (2006), 1225-1285.  doi: 10.1002/cpa.20148.  Google Scholar

[27]

N. Makarenko, The second long-wave approximation in the Cauchy-Poisson problem, Dyn. Contin. Media, 77 (1986), 56-72.   Google Scholar

[28]

G. Métivier, Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, Vol. 5, Scuola Norm. Sup. Pisa, 2008.  Google Scholar

[29]

L. V. Ovsjannikov, Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification, In: Appl. Meth. Funct. Anal. Probl. Mech. (IUTAM/IMU-Symp., Marseille, 1975), Lect. Notes Math. 503, Springer, 1976,426–437. doi: 10.1007/BFb0088777.  Google Scholar

[30]

M. Ricchiuto and A. G. Filippini, Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries, J. Comput. Physics, 271 (2014), 306-341.  doi: 10.1016/j.jcp.2013.12.048.  Google Scholar

[31]

M. E. Taylor, Partial Differential Equations III, Applied Mathematical Sciences, 117, Springer, 2011.  Google Scholar

[32]

G. WeiJ. T. KirbyS. T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves, Part I. Highly nonlinear unsteady waves, J. Fluid Mech., 294 (1995), 71-92.  doi: 10.1017/S0022112095002813.  Google Scholar

[33]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Applied Mech. and Techn. Phys., 9 (1968), 190-194.  doi: 10.1007/BF00913182.  Google Scholar

[34]

Y. ZhangA. B. KennedyN. PandaC. Dawson and J. J. Westerink, Boussinesq-Green-Naghdi rotational water wave theory, Coastal Engrg., 73 (2013), 13-27.  doi: 10.1016/j.coastaleng.2012.09.005.  Google Scholar

show all references

References:
[1]

S. Alinhac and P. Gérard, Opérateurs Pseudo-différentiels et Théorème de Nash-Moser, Savoirs Actuels, InterEditions, Paris; Éditions du Centre national de la recherche scientifique, Meudon, 1991.  Google Scholar

[2]

B. Alvarez-Samaniego and D. Lannes, Large time existence for 3D water-waves and asymptotics, Invent. Math., 171 (2008), 485-541.  doi: 10.1007/s00222-007-0088-4.  Google Scholar

[3]

S. V. Basenkova, N. N. Morozov and O. P. Pogutse, Dispersive effects in two-dimensional hydrodynamics, Dokl. Akad. Nauk, 293 (1985), 818–822 (transl. Sov. Phys. Dokl., 32 (1987), 262–264). Google Scholar

[4]

P. BonnetonF. ChazelD. LannesF. Marche and M. Tissier, A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model, J. Comput. Phys., 230 (2011), 1479-1498.  doi: 10.1016/j.jcp.2010.11.015.  Google Scholar

[5]

A. Castro and D. Lannes, Fully nonlinear long-wave models in the presence of vorticity, J. Fluid Mech., 759 (2014), 642-675.  doi: 10.1017/jfm.2014.593.  Google Scholar

[6]

A. Castro and D. Lannes, Well-posedness and shallow-water stability for a new Hamiltonian formulation of the water waves equations with vorticity, Indiana Univ. Math. J., 64 (2015), 1169-1270.  doi: 10.1512/iumj.2015.64.5606.  Google Scholar

[7]

Q. ChenJ. T. KirbyR. A. DalrympleA. B. Kennedy and A. Chawla, Boussinesq modeling of wave transformation, breaking, and runup, Part II: Two horizontal dimensions, J. Waterway Port Coastal Ocean Engrg., 126 (2000), 48-56.  doi: 10.1061/(ASCE)0733-950X(2000)126:1(48).  Google Scholar

[8]

Q. ChenJ. T. KirbyR. A. DalrympleF. Shi and E. B. Thornton, Boussinesq modeling of longshore currents, J. Geophys. Res., 108 (2003), 3362-3379.  doi: 10.1029/2002JC001308.  Google Scholar

[9]

R. CienfuegosE. Barthélemy and P. Bonneton, A fourth-order compact finite volume scheme for fully nonlinear and weakly dispersive Boussinesq-type equations, Part I: Model development and analysis, Int. J. Numer. Meth. Fluids, 51 (2006), 1217-1253.  doi: 10.1002/fld.1141.  Google Scholar

[10]

V. Duchêne and S. Israwi, Well-posedness of the Green-Naghdi and Boussinesq-Peregrine systems, Ann. Math. Blaise Pascal, 25 (2018), 21-74.  doi: 10.5802/ambp.372.  Google Scholar

[11]

V. DuchêneS. Israwi and R. Talhouk, A new fully justified asymptotic model for the propagation of internal waves in the Camassa-Holm regime, SIAM J. Math. Anal., 47 (2015), 240-290.  doi: 10.1137/130947064.  Google Scholar

[12]

V. DuchêneS. Israwi and R. Talhouk, A new class of two-layer Green-Naghdi systems with improved frequency dispersion, Stud. Appl. Math., 137 (2016), 356-415.  doi: 10.1111/sapm.12125.  Google Scholar

[13]

D. DutykhD. ClamondP. Milewski and D. Mitsotakis, Finite volume and pseudo-spectral schemes for the fully nonlinear 1D Serre equations, European J. Appl. Math., 24 (2013), 761-787.  doi: 10.1017/S0956792513000168.  Google Scholar

[14]

A. E. GreenN. Laws and P. M. Naghdi, On the theory of water waves, Proc. Royal Soc. London Ser. A, 338 (1974), 43-55.  doi: 10.1098/rspa.1974.0072.  Google Scholar

[15]

A. E. Green and P. M. Naghdi, A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78 (1976), 237-246.  doi: 10.1017/S0022112076002425.  Google Scholar

[16]

T. Iguchi, A shallow water approximation for water waves, J. Math. Kyoto Univ., 49 (2009), 13-55.  doi: 10.1215/kjm/1248983028.  Google Scholar

[17]

S. Israwi, Large time existence for 1D Green-Naghdi equations, Nonlinear Anal., 74 (2011), 81-93.  doi: 10.1016/j.na.2010.08.019.  Google Scholar

[18]

S. Israwi and H. Kalisch, Approximate conservation laws in the KdV equation, Phys. Lett. A, 383 (2019), 854-858.  doi: 10.1016/j.physleta.2018.12.009.  Google Scholar

[19]

T. Kano and T. Nishida, Sur les ondes de surface de l'eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ., 19 (1979), 335-370.  doi: 10.1215/kjm/1250522437.  Google Scholar

[20]

T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations, Comm. Pure Appl. Math., 41 (1988), 891-907.  doi: 10.1002/cpa.3160410704.  Google Scholar

[21]

M. KazoleaA. I. DelisI. K. Nikolos and C. E. Synolakis, An unstructured finite volume numerical scheme for extended 2D Boussinesq-type equations, Coastal Eng., 69 (2012), 42-66.  doi: 10.1016/j.coastaleng.2012.05.008.  Google Scholar

[22]

D. Lannes, Sharp estimates for pseudo-differential operators with symbols of limited smoothness and commutators, J. Funct. Anal., 232 (2006), 495-539.  doi: 10.1016/j.jfa.2005.07.003.  Google Scholar

[23]

D. Lannes and P. Bonneton, Derivation of asymptotic two-dimensional time-dependent equations for surface water wave propagation, Phys. Fluids, 21 (2009), 016601. doi: 10.1063/1.3053183.  Google Scholar

[24]

D. Lannes and F. Marche, A new class of fully nonlinear and weakly dispersive Green-Naghdi models for efficient 2D simulations, J. Comput. Physics, 282 (2015), 238-268.  doi: 10.1016/j.jcp.2014.11.016.  Google Scholar

[25]

O. Le MétayerS. Gavrilyuk and S. Hank, A numerical scheme for the Green-Naghdi model, J. Comp. Phys., 229 (2010), 2034-2045.  doi: 10.1016/j.jcp.2009.11.021.  Google Scholar

[26]

Y. A. Li, A shallow-water approximation to the full water wave problem, Comm. Pure Appl. Math., 59 (2006), 1225-1285.  doi: 10.1002/cpa.20148.  Google Scholar

[27]

N. Makarenko, The second long-wave approximation in the Cauchy-Poisson problem, Dyn. Contin. Media, 77 (1986), 56-72.   Google Scholar

[28]

G. Métivier, Para-differential Calculus and Applications to the Cauchy Problem for Nonlinear Systems, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, Vol. 5, Scuola Norm. Sup. Pisa, 2008.  Google Scholar

[29]

L. V. Ovsjannikov, Cauchy problem in a scale of Banach spaces and its application to the shallow water theory justification, In: Appl. Meth. Funct. Anal. Probl. Mech. (IUTAM/IMU-Symp., Marseille, 1975), Lect. Notes Math. 503, Springer, 1976,426–437. doi: 10.1007/BFb0088777.  Google Scholar

[30]

M. Ricchiuto and A. G. Filippini, Upwind residual discretization of enhanced Boussinesq equations for wave propagation over complex bathymetries, J. Comput. Physics, 271 (2014), 306-341.  doi: 10.1016/j.jcp.2013.12.048.  Google Scholar

[31]

M. E. Taylor, Partial Differential Equations III, Applied Mathematical Sciences, 117, Springer, 2011.  Google Scholar

[32]

G. WeiJ. T. KirbyS. T. Grilli and R. Subramanya, A fully nonlinear Boussinesq model for surface waves, Part I. Highly nonlinear unsteady waves, J. Fluid Mech., 294 (1995), 71-92.  doi: 10.1017/S0022112095002813.  Google Scholar

[33]

V. E. Zakharov, Stability of periodic waves of finite amplitude on the surface of a deep fluid, J. Applied Mech. and Techn. Phys., 9 (1968), 190-194.  doi: 10.1007/BF00913182.  Google Scholar

[34]

Y. ZhangA. B. KennedyN. PandaC. Dawson and J. J. Westerink, Boussinesq-Green-Naghdi rotational water wave theory, Coastal Engrg., 73 (2013), 13-27.  doi: 10.1016/j.coastaleng.2012.09.005.  Google Scholar

[1]

Chengchun Hao. Cauchy problem for viscous shallow water equations with surface tension. Discrete & Continuous Dynamical Systems - B, 2010, 13 (3) : 593-608. doi: 10.3934/dcdsb.2010.13.593

[2]

Lijun Zhang, Yixia Shi, Maoan Han. Smooth and singular traveling wave solutions for the Serre-Green-Naghdi equations. Discrete & Continuous Dynamical Systems - S, 2020, 13 (10) : 2917-2926. doi: 10.3934/dcdss.2020217

[3]

Claudio Giorgi, Diego Grandi, Vittorino Pata. On the Green-Naghdi Type III heat conduction model. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2133-2143. doi: 10.3934/dcdsb.2014.19.2133

[4]

Min Chen, Nghiem V. Nguyen, Shu-Ming Sun. Solitary-wave solutions to Boussinesq systems with large surface tension. Discrete & Continuous Dynamical Systems, 2010, 26 (4) : 1153-1184. doi: 10.3934/dcds.2010.26.1153

[5]

Roman M. Taranets, Jeffrey T. Wong. Existence of weak solutions for particle-laden flow with surface tension. Discrete & Continuous Dynamical Systems, 2018, 38 (10) : 4979-4996. doi: 10.3934/dcds.2018217

[6]

Anna Geyer, Ronald Quirchmayr. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete & Continuous Dynamical Systems, 2018, 38 (3) : 1567-1604. doi: 10.3934/dcds.2018065

[7]

Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete & Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109

[8]

Xiaoping Zhai, Hailong Ye. On global large energy solutions to the viscous shallow water equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (11) : 4277-4293. doi: 10.3934/dcdsb.2020097

[9]

Anna Geyer, Ronald Quirchmayr. Shallow water models for stratified equatorial flows. Discrete & Continuous Dynamical Systems, 2019, 39 (8) : 4533-4545. doi: 10.3934/dcds.2019186

[10]

Julien Chambarel, Christian Kharif, Olivier Kimmoun. Focusing wave group in shallow water in the presence of wind. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 773-782. doi: 10.3934/dcdsb.2010.13.773

[11]

Xue Yang, Xinglong Wu. Wave breaking and persistent decay of solution to a shallow water wave equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2149-2165. doi: 10.3934/dcdss.2016089

[12]

Issam S. Strub, Julie Percelay, Olli-Pekka Tossavainen, Alexandre M. Bayen. Comparison of two data assimilation algorithms for shallow water flows. Networks & Heterogeneous Media, 2009, 4 (2) : 409-430. doi: 10.3934/nhm.2009.4.409

[13]

E. S. Van Vleck, Aijun Zhang. Competing interactions and traveling wave solutions in lattice differential equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 457-475. doi: 10.3934/cpaa.2016.15.457

[14]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[15]

Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016

[16]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[17]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[18]

Denys Dutykh, Dimitrios Mitsotakis. On the relevance of the dam break problem in the context of nonlinear shallow water equations. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 799-818. doi: 10.3934/dcdsb.2010.13.799

[19]

Werner Bauer, François Gay-Balmaz. Towards a geometric variational discretization of compressible fluids: The rotating shallow water equations. Journal of Computational Dynamics, 2019, 6 (1) : 1-37. doi: 10.3934/jcd.2019001

[20]

Daniel Guo, John Drake. A global semi-Lagrangian spectral model for the reformulated shallow water equations. Conference Publications, 2003, 2003 (Special) : 375-385. doi: 10.3934/proc.2003.2003.375

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (101)
  • HTML views (146)
  • Cited by (0)

Other articles
by authors

[Back to Top]