July  2021, 14(7): 2297-2309. doi: 10.3934/dcdss.2021053

New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme

Siirt University, Department of Mathematics Education, Siirt, Turkey

Received  July 2019 Revised  December 2020 Published  May 2021

In this paper, we introduce a new fractional integro-differential equation involving newly introduced differential and integral operators so-called fractal-fractional derivatives and integrals. We present a numerical scheme that is convenient for obtaining solution of such equations. We give the general conditions for the existence and uniqueness of the solution of the considered equation using Banach fixed-point theorem. Both the suggested new equation and new numerical scheme will considerably contribute for our readers in theory and applications.

Citation: Seda İğret Araz. New class of volterra integro-differential equations with fractal-fractional operators: Existence, uniqueness and numerical scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2297-2309. doi: 10.3934/dcdss.2021053
References:
[1]

K. A. AbroM. M. RashidiI. KhanI. A. Abro and A. Tassaddiq, Analysis of stokes' second problem for nanofluids using modern approach of Atangana-Baleanu fractional derivative, Journal of Nanofluids, 7 (2018), 738-747.  doi: 10.1166/jon.2018.1486.  Google Scholar

[2]

J. F. G. Aguilar and A. Atangana, New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 12017, 13. Google Scholar

[3]

H. M. Ahmed, Controllability for sobolev type fractional integro-differential systems in a banach space, Advance in Difference Equations, 2012 (2012), 167. doi: 10.1186/1687-1847-2012-167.  Google Scholar

[4]

H. M. Ahmed, M. M. El-Borai, H. M. Ei-Owaidy and A. S. Ghanem, Existence solution and controllability of Sobolev type delay nonlinear fractional integro-differential system, Mathematics, 7 (2019), 79. doi: 10.3390/math7010079.  Google Scholar

[5]

E. Atangana, New insight kinetic modeling: Models above classical chemical mechanic, Chaos, Solitons & Fractals, 128 (2019), 16-24.  doi: 10.1016/j.chaos.2019.07.013.  Google Scholar

[6]

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos, Solitons & Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.  Google Scholar

[7]

A. Atangana and S. İğret Araz, Fractional stochastic modelling illustration with modified Chua attractor, The European Physical Journal Plus, 134 (2019), 160. doi: 10.1140/epjp/i2019-12565-6.  Google Scholar

[8]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[9]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[10]

A. Atangana and S. Jain, The role of power decay, exponential decay and Mittag-Leffler function's waiting time distribution: Application of cancer spread, Physica A, 512 (2018), 330-351.  doi: 10.1016/j.physa.2018.08.033.  Google Scholar

[11]

A. Atangana and S. İğret Araz, Analysis of a new partial integro-differential equation with mixed fractional operators, Chaos, Solitons & Fractals, 127 (2019), 257-271.  doi: 10.1016/j.chaos.2019.06.005.  Google Scholar

[12]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[13]

K. BalachandranE. R. Anandhi and J. P. Dauer, Boundary controllability of Sobolev-type abstract nonlinear integro-differential systems, Journal of Mathematical Analysis and Applications, 277 (2003), 446-464.  doi: 10.1016/S0022-247X(02)00522-X.  Google Scholar

[14]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.   Google Scholar

[15]

B. Cuahutenango-Barro, M. A. Taneco-Hernández, J. F. Gó mez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos, Solitons & Fractals, 115 (2018), 283-299. doi: 10.1016/j.chaos.2018.09.002.  Google Scholar

[16]

E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fractional Calculus and Applied Analysis, 18 (2015), 554-564.  doi: 10.1515/fca-2015-0034.  Google Scholar

[17]

J. Hristov, Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in fractional calculus, Sharjah: Bentham Science Publishers, (2017), 269–341. doi: 10.2174/9781681085999118010013.  Google Scholar

[18]

S. İğret Araz, Analysis of a Covid-19 model: Optimal control, stability and simulations, Alexandria Engineering Journal, 60 (2020), 647-658.  doi: 10.1016/j.aej.2020.09.058.  Google Scholar

[19]

S. İğret Araz, Numerical analysis of a new Volterra integro-differential equation involving fractal-fractional operators, Chaos, Solitons & Fractals, 130 (2020), 109396. doi: 10.1016/j.chaos.2019.109396.  Google Scholar

[20]

K. Kavitha, V. Vijayakumar and R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos, Solitons & Fractals, 139 (2020), 110035. doi: 10.1016/j.chaos.2020.110035.  Google Scholar

[21]

A. M. S. Mahdy, Numerical studies for solving fractional integro-differential equations, Journal of Ocean Engineering and Science, 3 (2018), 127-132.  doi: 10.1016/j.joes.2018.05.004.  Google Scholar

[22]

T. Mekkaoui and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. Google Scholar

[23]

F. Mohammadi and C. Cattani, A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations, Journal of Computational and Applied Mathematics, 339 (2018), 306-316.  doi: 10.1016/j.cam.2017.09.031.  Google Scholar

[24]

K. M. Owolabi and Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos, 29 (2019), 013145, 15 pp. doi: 10.1063/1.5086909.  Google Scholar

[25]

C. Ravichandran, K. Logeswari, S. K. Panda and K. S. Nisar, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos, Solitons & Fractals, 139 (2020), 110012, 9 pp. doi: 10.1016/j.chaos.2020.110012.  Google Scholar

[26]

R. SakthivelQ. H. Choi and S. M. Anthoni, Controllability of nonlinear neutral evolution integro-differential systems, Journal of Mathematical Analysis and Applications, 275 (2002), 402-417.  doi: 10.1016/S0022-247X(02)00375-X.  Google Scholar

[27]

S. T. Sutar and K. D. Kucche, On fractional volterra integro differential equations with fractional integrable impulses, Math Model Anal, 24 (2019), 457-477.  doi: 10.3846/mma.2019.028.  Google Scholar

[28]

S. Tate, V. V. Kharat and H. T. Dinde, On Nonlinear Fractional Integro–Differential Equations with Positive Constant Coefficient, Mediterranean Journal of Mathematics, 16 (2019), 41. doi: 10.1007/s00009-019-1325-y.  Google Scholar

show all references

References:
[1]

K. A. AbroM. M. RashidiI. KhanI. A. Abro and A. Tassaddiq, Analysis of stokes' second problem for nanofluids using modern approach of Atangana-Baleanu fractional derivative, Journal of Nanofluids, 7 (2018), 738-747.  doi: 10.1166/jon.2018.1486.  Google Scholar

[2]

J. F. G. Aguilar and A. Atangana, New insight in fractional differentiation: power, exponential decay and Mittag-Leffler laws and applications, The European Physical Journal Plus, 132 12017, 13. Google Scholar

[3]

H. M. Ahmed, Controllability for sobolev type fractional integro-differential systems in a banach space, Advance in Difference Equations, 2012 (2012), 167. doi: 10.1186/1687-1847-2012-167.  Google Scholar

[4]

H. M. Ahmed, M. M. El-Borai, H. M. Ei-Owaidy and A. S. Ghanem, Existence solution and controllability of Sobolev type delay nonlinear fractional integro-differential system, Mathematics, 7 (2019), 79. doi: 10.3390/math7010079.  Google Scholar

[5]

E. Atangana, New insight kinetic modeling: Models above classical chemical mechanic, Chaos, Solitons & Fractals, 128 (2019), 16-24.  doi: 10.1016/j.chaos.2019.07.013.  Google Scholar

[6]

A. Atangana and J. F. Gómez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos, Solitons & Fractals, 102 (2017), 285-294.  doi: 10.1016/j.chaos.2017.03.022.  Google Scholar

[7]

A. Atangana and S. İğret Araz, Fractional stochastic modelling illustration with modified Chua attractor, The European Physical Journal Plus, 134 (2019), 160. doi: 10.1140/epjp/i2019-12565-6.  Google Scholar

[8]

A. Atangana and D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Thermal Science, 20 (2016), 763-769.  doi: 10.2298/TSCI160111018A.  Google Scholar

[9]

A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A, 505 (2018), 688-706.  doi: 10.1016/j.physa.2018.03.056.  Google Scholar

[10]

A. Atangana and S. Jain, The role of power decay, exponential decay and Mittag-Leffler function's waiting time distribution: Application of cancer spread, Physica A, 512 (2018), 330-351.  doi: 10.1016/j.physa.2018.08.033.  Google Scholar

[11]

A. Atangana and S. İğret Araz, Analysis of a new partial integro-differential equation with mixed fractional operators, Chaos, Solitons & Fractals, 127 (2019), 257-271.  doi: 10.1016/j.chaos.2019.06.005.  Google Scholar

[12]

A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos, Solitons Fractals, 102 (2017), 396-406.  doi: 10.1016/j.chaos.2017.04.027.  Google Scholar

[13]

K. BalachandranE. R. Anandhi and J. P. Dauer, Boundary controllability of Sobolev-type abstract nonlinear integro-differential systems, Journal of Mathematical Analysis and Applications, 277 (2003), 446-464.  doi: 10.1016/S0022-247X(02)00522-X.  Google Scholar

[14]

M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73-85.   Google Scholar

[15]

B. Cuahutenango-Barro, M. A. Taneco-Hernández, J. F. Gó mez-Aguilar, On the solutions of fractional-time wave equation with memory effect involving operators with regular kernel, Chaos, Solitons & Fractals, 115 (2018), 283-299. doi: 10.1016/j.chaos.2018.09.002.  Google Scholar

[16]

E. F. D. Goufo, A biomathematical view on the fractional dynamics of cellulose degradation, Fractional Calculus and Applied Analysis, 18 (2015), 554-564.  doi: 10.1515/fca-2015-0034.  Google Scholar

[17]

J. Hristov, Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Frontiers in fractional calculus, Sharjah: Bentham Science Publishers, (2017), 269–341. doi: 10.2174/9781681085999118010013.  Google Scholar

[18]

S. İğret Araz, Analysis of a Covid-19 model: Optimal control, stability and simulations, Alexandria Engineering Journal, 60 (2020), 647-658.  doi: 10.1016/j.aej.2020.09.058.  Google Scholar

[19]

S. İğret Araz, Numerical analysis of a new Volterra integro-differential equation involving fractal-fractional operators, Chaos, Solitons & Fractals, 130 (2020), 109396. doi: 10.1016/j.chaos.2019.109396.  Google Scholar

[20]

K. Kavitha, V. Vijayakumar and R. Udhayakumar, Results on controllability of Hilfer fractional neutral differential equations with infinite delay via measures of noncompactness, Chaos, Solitons & Fractals, 139 (2020), 110035. doi: 10.1016/j.chaos.2020.110035.  Google Scholar

[21]

A. M. S. Mahdy, Numerical studies for solving fractional integro-differential equations, Journal of Ocean Engineering and Science, 3 (2018), 127-132.  doi: 10.1016/j.joes.2018.05.004.  Google Scholar

[22]

T. Mekkaoui and A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: Application to chaotic models, The European Physical Journal Plus, 132 (2017), 444. Google Scholar

[23]

F. Mohammadi and C. Cattani, A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations, Journal of Computational and Applied Mathematics, 339 (2018), 306-316.  doi: 10.1016/j.cam.2017.09.031.  Google Scholar

[24]

K. M. Owolabi and Z. Hammouch, Mathematical modeling and analysis of two-variable system with noninteger-order derivative, Chaos, 29 (2019), 013145, 15 pp. doi: 10.1063/1.5086909.  Google Scholar

[25]

C. Ravichandran, K. Logeswari, S. K. Panda and K. S. Nisar, On new approach of fractional derivative by Mittag-Leffler kernel to neutral integro-differential systems with impulsive conditions, Chaos, Solitons & Fractals, 139 (2020), 110012, 9 pp. doi: 10.1016/j.chaos.2020.110012.  Google Scholar

[26]

R. SakthivelQ. H. Choi and S. M. Anthoni, Controllability of nonlinear neutral evolution integro-differential systems, Journal of Mathematical Analysis and Applications, 275 (2002), 402-417.  doi: 10.1016/S0022-247X(02)00375-X.  Google Scholar

[27]

S. T. Sutar and K. D. Kucche, On fractional volterra integro differential equations with fractional integrable impulses, Math Model Anal, 24 (2019), 457-477.  doi: 10.3846/mma.2019.028.  Google Scholar

[28]

S. Tate, V. V. Kharat and H. T. Dinde, On Nonlinear Fractional Integro–Differential Equations with Positive Constant Coefficient, Mediterranean Journal of Mathematics, 16 (2019), 41. doi: 10.1007/s00009-019-1325-y.  Google Scholar

[1]

Abdon Atangana, Ali Akgül. On solutions of fractal fractional differential equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020421

[2]

Ali Akgül. Analysis and new applications of fractal fractional differential equations with power law kernel. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020423

[3]

Sertan Alkan. A new solution method for nonlinear fractional integro-differential equations. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1065-1077. doi: 10.3934/dcdss.2015.8.1065

[4]

Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021030

[5]

Miloud Moussai. Application of the bernstein polynomials for solving the nonlinear fractional type Volterra integro-differential equation with caputo fractional derivatives. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021021

[6]

Ji Shu, Linyan Li, Xin Huang, Jian Zhang. Limiting behavior of fractional stochastic integro-Differential equations on unbounded domains. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020044

[7]

Ramasamy Subashini, Chokkalingam Ravichandran, Kasthurisamy Jothimani, Haci Mehmet Baskonus. Existence results of Hilfer integro-differential equations with fractional order. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 911-923. doi: 10.3934/dcdss.2020053

[8]

Amy Allwright, Abdon Atangana, Toufik Mekkaoui. Fractional and fractal advection-dispersion model. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2055-2074. doi: 10.3934/dcdss.2021061

[9]

Eduardo Cuesta. Asymptotic behaviour of the solutions of fractional integro-differential equations and some time discretizations. Conference Publications, 2007, 2007 (Special) : 277-285. doi: 10.3934/proc.2007.2007.277

[10]

Priscila Santos Ramos, J. Vanterler da C. Sousa, E. Capelas de Oliveira. Existence and uniqueness of mild solutions for quasi-linear fractional integro-differential equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020100

[11]

Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064

[12]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[13]

Ilknur Koca. Numerical analysis of coupled fractional differential equations with Atangana-Baleanu fractional derivative. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 475-486. doi: 10.3934/dcdss.2019031

[14]

Shihchung Chiang. Numerical optimal unbounded control with a singular integro-differential equation as a constraint. Conference Publications, 2013, 2013 (special) : 129-137. doi: 10.3934/proc.2013.2013.129

[15]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[16]

Yones Esmaeelzade Aghdam, Hamid Safdari, Yaqub Azari, Hossein Jafari, Dumitru Baleanu. Numerical investigation of space fractional order diffusion equation by the Chebyshev collocation method of the fourth kind and compact finite difference scheme. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2025-2039. doi: 10.3934/dcdss.2020402

[17]

Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2679-2694. doi: 10.3934/dcdsb.2017188

[18]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[19]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[20]

Brahim Boufoussi, Soufiane Mouchtabih. Controllability of neutral stochastic functional integro-differential equations driven by fractional brownian motion with Hurst parameter lesser than $ 1/2 $. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020096

2019 Impact Factor: 1.233

Metrics

  • PDF downloads (46)
  • HTML views (58)
  • Cited by (0)

Other articles
by authors

[Back to Top]