• Previous Article
    A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics
  • DCDS-S Home
  • This Issue
  • Next Article
    Mathematical model of diabetes and its complication involving fractional operator without singular kernal
July  2021, 14(7): 2163-2181. doi: 10.3934/dcdss.2021055

Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion

1. 

Laboratoire MAE2D, Université A. ESSAADI, Faculté Polydisciplinaire - B.P 745, Larache, Maroc

2. 

Laboratoire LAREFAG, Ecole Nationale de Commerce et de Gestion, B.P. 1255, Tanger, Maroc

3. 

Sorbonne University, IRD, UMMISCO, F-93143, Bondy, France, LMDP, Université Cadi Ayyad, Faculté des Sciences de Semlalia, Marrakech, Maroc

4. 

IXXI, ENS Lyon, 46 allée d'Italie, 69364 Lyon cedex 7, France

5. 

Sorbonne University, IRD, UMMISCO, F-93143, Bondy, France

* Corresponding author: anouarelharrak1@gmail.com

Received  July 2019 Revised  September 2020 Published  July 2021 Early access  May 2021

The main goal of this paper is to adapt a class of complexity reduction methods called aggregation of variables methods to the construction of reduced models of two-time reaction-diffusion-chemotaxis models of spatially structured populations and to provide an error bound of the approximate dynamics. Aggregation of variables methods are general techniques that allow reducing the dimension of a mathematical dynamical system. Here we reduce a system of Partial Differential Equations to a simpler Ordinary Differential Equation system, provided that the evolution processes occur at two different time scales: a slow one for the demography and a fast one for migrations and chemotaxis, with a ratio $ \varepsilon>0 $ small enough. We give an approximation of the error between solutions of both original and reduced model for a generic function representing the demography. Finally, we provide an optimization of the error bound and validate numerically this result for a spatial inter-specific model with constant diffusion and population growth given by a logistic law in population dynamics.

Citation: Anouar El Harrak, Amal Bergam, Tri Nguyen-Huu, Pierre Auger, Rachid Mchich. Application of aggregation of variables methods to a class of two-time reaction-diffusion-chemotaxis models of spatially structured populations with constant diffusion. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2163-2181. doi: 10.3934/dcdss.2021055
References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U, MoustakasRainer, N. Schlotterbeck, U. Groh, H. P. Lotz and F. Neubrander, One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, Springer, 2006. doi: 10.1007/BFb0074922.

[2]

P. Auger and R. Bravo de la Parra, Methods of aggregation of variables in population dynamics Méthodes d'agrégation de variables en dynamique de population, C. R. Acad. Sci. Paris Sér. Ⅲ Sci. Vie, 323 (2000), 665 – 674. doi: 10.1016/S0764-4469(00)00182-7.

[3]

P. Auger and J.-C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, Math. Comput. Modelling, 27 (1998), 1-21.  doi: 10.1016/S0895-7177(98)00002-8.

[4]

P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and T. Nguyen-Huu, Aggregation of variables and applications to population dynamics, Lect. Notes Math., Springer Berlin Heidelberg, (2008), 209–263. doi: 10.1007/978-3-540-78273-5_5.

[5]

P. M. Auger and R. Roussarie, Complex ecological models with simple dynamics: From individuals to populations, Acta Biotheor., 42 (1994), 111-136.  doi: 10.1007/BF00709485.

[6]

T. BrochierP. AugerD. ThiaoA. BahS. LyT. Nguyen-Huu and P. Brehmer, Can overexploited fisheries recover by self-organization? reallocation of fishing effort as an emergent form of governance, Mar. Policy, 95 (2018), 46-56.  doi: 10.1016/j.marpol.2018.06.009.

[7]

M. Eisenbach, Chemotaxis, World Scientific Publishing Company, 2004.

[8]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handb. Numer. Anal., North-Holland, Amsterdam, VII (2000), 713–1020. doi: 10.1086/phos.67.4.188705.

[9] S. D. Fretwell, Populations in a Seasonal Environment, Princeton University Press, 1972. 
[10]

M. F. Goy, M. S. Springer and G. L. Hazelbauer, Taxis and behaviour, elementary sensory systems in biology, in Receptors and Recognition, Ser. B, Chapman and Hall London, 5 (1978), 1–34.

[11] W. Gurney and R. M. Nisbet, Ecological Dynamics, Oxford University Press, 1998. 
[12]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.

[13]

X. Mora, Semilinear parabolic problems define semiflows on $ {C}^k $ spaces, Trans. Amer. Math. Soc., 278 (1983), 21-55.  doi: 10.2307/1999300.

[14]

K. W. Morton and E. Sūli, Finite volume methods and their analysis, IMA J. Numer. Anal., 11 (1991), 241-260.  doi: 10.1093/imanum/11.2.241.

[15]

V. N. MoseT. Nguyen-HuuP. Auger and D. Western, Modelling herbivore population dynamics in the amboseli national park, kenya: Application of spatial aggregation of variables to derive a master model, Ecol. Complex., 10 (2012), 42-51.  doi: 10.1016/j.ecocom.2012.02.002.

[16]

A. MoussaouiM. BensenaneP. Auger and A. Bah, On the optimal size and number of reserves in a multi-site fishery model. journal of biological systems, J. Biol. Systems, 23 (2015), 31-47.  doi: 10.1142/S0218339015500023.

[17]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[18]

T. H. NguyenT. BrochierP. AugerV. D. Trinh and P. Brehmer, Competition or cooperation in transboundary fish stocks management: Insight from a dynamical model, J. Theoret. Biol., 447 (2018), 1-11.  doi: 10.1016/j.jtbi.2018.03.017.

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

E. SánchezP. Auger and J. C. Poggiale, Two-time scales in spatially structured models of population dynamics: A semigroup approach, J. Math. Anal. Appl., 375 (2011), 149-165.  doi: 10.1016/j.jmaa.2010.08.014.

[21]

E. SánchezO. ArinoP. Auger and R. Bravo de la Parra, A singular perturbation in an age-structured population model, SIAM J. Appl. Math., 60 (2000), 408-436.  doi: 10.1137/S0036139998337966.

[22]

E. SánchezR. Bravo de la ParraP. Auger and P. Gómez-Mourelo, Time scales in linear delayed differential equations, J. Math. Anal. Appl., 323 (2006), 680-699.  doi: 10.1016/j.jmaa.2005.10.074.

[23] D. Tilman and P. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (MPB-30), Princeton University Press, 1997.  doi: 10.1515/9780691188362.
[24]

R. Vilsmeier, F. Benkhaldoun and D. Hänel, Finite Volumes for Complex Applications II, Hermes Science Publications, Paris, 1999.

show all references

References:
[1]

W. Arendt, A. Grabosch, G. Greiner, U, MoustakasRainer, N. Schlotterbeck, U. Groh, H. P. Lotz and F. Neubrander, One-Parameter Semigroups of Positive Operators, Lecture Notes in Mathematics, Springer, 2006. doi: 10.1007/BFb0074922.

[2]

P. Auger and R. Bravo de la Parra, Methods of aggregation of variables in population dynamics Méthodes d'agrégation de variables en dynamique de population, C. R. Acad. Sci. Paris Sér. Ⅲ Sci. Vie, 323 (2000), 665 – 674. doi: 10.1016/S0764-4469(00)00182-7.

[3]

P. Auger and J.-C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, Math. Comput. Modelling, 27 (1998), 1-21.  doi: 10.1016/S0895-7177(98)00002-8.

[4]

P. Auger, R. Bravo de la Parra, J.-C. Poggiale, E. Sánchez and T. Nguyen-Huu, Aggregation of variables and applications to population dynamics, Lect. Notes Math., Springer Berlin Heidelberg, (2008), 209–263. doi: 10.1007/978-3-540-78273-5_5.

[5]

P. M. Auger and R. Roussarie, Complex ecological models with simple dynamics: From individuals to populations, Acta Biotheor., 42 (1994), 111-136.  doi: 10.1007/BF00709485.

[6]

T. BrochierP. AugerD. ThiaoA. BahS. LyT. Nguyen-Huu and P. Brehmer, Can overexploited fisheries recover by self-organization? reallocation of fishing effort as an emergent form of governance, Mar. Policy, 95 (2018), 46-56.  doi: 10.1016/j.marpol.2018.06.009.

[7]

M. Eisenbach, Chemotaxis, World Scientific Publishing Company, 2004.

[8]

R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, Handb. Numer. Anal., North-Holland, Amsterdam, VII (2000), 713–1020. doi: 10.1086/phos.67.4.188705.

[9] S. D. Fretwell, Populations in a Seasonal Environment, Princeton University Press, 1972. 
[10]

M. F. Goy, M. S. Springer and G. L. Hazelbauer, Taxis and behaviour, elementary sensory systems in biology, in Receptors and Recognition, Ser. B, Chapman and Hall London, 5 (1978), 1–34.

[11] W. Gurney and R. M. Nisbet, Ecological Dynamics, Oxford University Press, 1998. 
[12]

E. F. Keller and L. A. Segel, Model for chemotaxis, J. Theoret. Biol., 30 (1971), 225-234.  doi: 10.1016/0022-5193(71)90050-6.

[13]

X. Mora, Semilinear parabolic problems define semiflows on $ {C}^k $ spaces, Trans. Amer. Math. Soc., 278 (1983), 21-55.  doi: 10.2307/1999300.

[14]

K. W. Morton and E. Sūli, Finite volume methods and their analysis, IMA J. Numer. Anal., 11 (1991), 241-260.  doi: 10.1093/imanum/11.2.241.

[15]

V. N. MoseT. Nguyen-HuuP. Auger and D. Western, Modelling herbivore population dynamics in the amboseli national park, kenya: Application of spatial aggregation of variables to derive a master model, Ecol. Complex., 10 (2012), 42-51.  doi: 10.1016/j.ecocom.2012.02.002.

[16]

A. MoussaouiM. BensenaneP. Auger and A. Bah, On the optimal size and number of reserves in a multi-site fishery model. journal of biological systems, J. Biol. Systems, 23 (2015), 31-47.  doi: 10.1142/S0218339015500023.

[17]

J. D. Murray, Mathematical Biology, Springer-Verlag, Berlin, 1989. doi: 10.1007/978-3-662-08539-4.

[18]

T. H. NguyenT. BrochierP. AugerV. D. Trinh and P. Brehmer, Competition or cooperation in transboundary fish stocks management: Insight from a dynamical model, J. Theoret. Biol., 447 (2018), 1-11.  doi: 10.1016/j.jtbi.2018.03.017.

[19]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44. Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[20]

E. SánchezP. Auger and J. C. Poggiale, Two-time scales in spatially structured models of population dynamics: A semigroup approach, J. Math. Anal. Appl., 375 (2011), 149-165.  doi: 10.1016/j.jmaa.2010.08.014.

[21]

E. SánchezO. ArinoP. Auger and R. Bravo de la Parra, A singular perturbation in an age-structured population model, SIAM J. Appl. Math., 60 (2000), 408-436.  doi: 10.1137/S0036139998337966.

[22]

E. SánchezR. Bravo de la ParraP. Auger and P. Gómez-Mourelo, Time scales in linear delayed differential equations, J. Math. Anal. Appl., 323 (2006), 680-699.  doi: 10.1016/j.jmaa.2005.10.074.

[23] D. Tilman and P. Kareiva, Spatial Ecology: The Role of Space in Population Dynamics and Interspecific Interactions (MPB-30), Princeton University Press, 1997.  doi: 10.1515/9780691188362.
[24]

R. Vilsmeier, F. Benkhaldoun and D. Hänel, Finite Volumes for Complex Applications II, Hermes Science Publications, Paris, 1999.

Figure 1.  Plot of the numerical solution of the perturbed problem (11), (A) and (C), and its approximate solution using aggregation of variables methods, (B) and (D), at two times $ t = 0.2 $ and $ t = 25 $ for $ \varepsilon = 1e-1 $
Figure 2.  Plot of total population of the global model and its approximate solution using aggregation of variables methods for for $ \varepsilon = 1e-1 $. $ K_T: = \int_{\Omega}K(x)dx $ stands for the total carrying capacity of the environment and $ K^\ast $ for the new homogeneous one
Figure 3.  Plot of errors, $ |N_{\varepsilon}(t)-N(t)| $, (A), and $ {\Vert n_{\varepsilon}(.,t)-\lambda(.)N(t) \Vert_\infty} $ with $ t\geq 1 $, (B), with respect to time $ t $ for different values of $ \varepsilon $; $ \varepsilon = 1e-1 $, $ \varepsilon = 1e-2 $, $ \varepsilon = 1e-3 $, and $ \varepsilon = 1e-4 $
[1]

Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1735-1757. doi: 10.3934/dcdsb.2015.20.1735

[2]

Chichia Chiu, Jui-Ling Yu. An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences & Engineering, 2007, 4 (2) : 187-203. doi: 10.3934/mbe.2007.4.187

[3]

Tristan Roget. On the long-time behaviour of age and trait structured population dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2551-2576. doi: 10.3934/dcdsb.2018265

[4]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 41-67. doi: 10.3934/dcds.2008.21.41

[5]

Henri Berestycki, Luca Rossi. Reaction-diffusion equations for population dynamics with forced speed II - cylindrical-type domains. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 19-61. doi: 10.3934/dcds.2009.25.19

[6]

Xiulan Lai, Xingfu Zou. A reaction diffusion system modeling virus dynamics and CTLs response with chemotaxis. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2567-2585. doi: 10.3934/dcdsb.2016061

[7]

Blaise Faugeras, Olivier Maury. An advection-diffusion-reaction size-structured fish population dynamics model combined with a statistical parameter estimation procedure: Application to the Indian Ocean skipjack tuna fishery. Mathematical Biosciences & Engineering, 2005, 2 (4) : 719-741. doi: 10.3934/mbe.2005.2.719

[8]

Laurent Desvillettes, Michèle Grillot, Philippe Grillot, Simona Mancini. Study of a degenerate reaction-diffusion system arising in particle dynamics with aggregation effects. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4675-4692. doi: 10.3934/dcds.2018205

[9]

G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 517-525. doi: 10.3934/dcdsb.2004.4.517

[10]

Yacouba Simporé, Oumar Traoré. Null controllability of a nonlinear age, space and two-sex structured population dynamics model. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021052

[11]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989

[12]

Xinfu Chen, King-Yeung Lam, Yuan Lou. Dynamics of a reaction-diffusion-advection model for two competing species. Discrete and Continuous Dynamical Systems, 2012, 32 (11) : 3841-3859. doi: 10.3934/dcds.2012.32.3841

[13]

Chuangxia Huang, Lihong Huang, Jianhong Wu. Global population dynamics of a single species structured with distinctive time-varying maturation and self-limitation delays. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2427-2440. doi: 10.3934/dcdsb.2021138

[14]

Hong Yang, Junjie Wei. Dynamics of spatially heterogeneous viral model with time delay. Communications on Pure and Applied Analysis, 2020, 19 (1) : 85-102. doi: 10.3934/cpaa.2020005

[15]

Hugo Leiva, Nelson Merentes, José L. Sánchez. Approximate controllability of semilinear reaction diffusion equations. Mathematical Control and Related Fields, 2012, 2 (2) : 171-182. doi: 10.3934/mcrf.2012.2.171

[16]

Anouar El Harrak, Hatim Tayeq, Amal Bergam. A posteriori error estimates for a finite volume scheme applied to a nonlinear reaction-diffusion equation in population dynamics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2183-2197. doi: 10.3934/dcdss.2021062

[17]

Jacson Simsen, Mariza Stefanello Simsen, Marcos Roberto Teixeira Primo. Reaction-Diffusion equations with spatially variable exponents and large diffusion. Communications on Pure and Applied Analysis, 2016, 15 (2) : 495-506. doi: 10.3934/cpaa.2016.15.495

[18]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure and Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[19]

Casimir Emako-Kazianou, Jie Liao, Nicolas Vauchelet. Synchronising and non-synchronising dynamics for a two-species aggregation model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2121-2146. doi: 10.3934/dcdsb.2017088

[20]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (260)
  • HTML views (210)
  • Cited by (0)

[Back to Top]