|
[1]
|
W. Bu, X. Liu, Y. Tang and Y. Jiang, Finite element multigrid method for multi-term time fractional advection-diffusion equations, Int. J. Model. Simul. Sci. Comput., 6 (2015), 154001.
doi: 10.1142/S1793962315400012.
|
|
[2]
|
A. R. Carella and C. A. Dorao, Least-squares spectral method for the solution of a fractional advection-dispersion equation, J. Comput. Phys., 232 (2013), 33-45.
doi: 10.1016/j.jcp.2012.04.050.
|
|
[3]
|
M. Donatelli, M. Mazza and S. Serra-Capizzano, Spectral analysis and structure preserving preconditioners for fractional diffusion equation, J. Comput. Phys., 307 (2016), 262-279.
doi: 10.1016/j.jcp.2015.11.061.
|
|
[4]
|
V. J. Ervin and J. P. Roop, Variational formulation for the stationary fractional advection-dispersion equation, Numer. Meth. Part. Diff. Equ., 22 (2006), 558-576.
doi: 10.1002/num.20112.
|
|
[5]
|
P. Frolkovič, D. Logashenko and C. Wehner, Flux-based level-set method for two-phase flows on unstructured grids, Comput. Vis. Sci., 18 (2016), 31-52.
doi: 10.1007/s00791-016-0269-z.
|
|
[6]
|
P. Frolkovič, Application of level set method for groundwater flow with moving boundary, Adv. Water. Resour., 47 (2012), 56-66.
doi: 10.1016/j.advwatres.2012.06.013.
|
|
[7]
|
P. Frolkovič, K. Mikula and J. Urbán, Semi-implicit finite volume level set method for advective motion of interfaces in normal direction, Appl. Num. Math., 95 (2015), 214-228.
doi: 10.1016/j.apnum.2014.05.011.
|
|
[8]
|
P. Frolkovič and K. Mikula, Semi-implicit second order schemes for numerical solution of level set advection equation on Cartesian grids, Applied Mathematics and Computation, 329 (2018), 129-142.
doi: 10.1016/j.amc.2018.01.065.
|
|
[9]
|
A. Golbabai and K. Sayevand, Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain, Math. Comput. Model., 53 (2011), 1708-1718.
doi: 10.1016/j.mcm.2010.12.046.
|
|
[10]
|
S. Gross and A. Reusken, Numerical Methods for Two-Phase Incompressible Flows, Springer, New York, 2011.
doi: 10.1007/978-3-642-19686-7.
|
|
[11]
|
H. Hejazi, T. Moroney and F. Liu, Stability and convergence of a finite volume method for the space fractional advection-dispersion equation, J. Comput. Appl. Math., 255 (2014), 684-697.
doi: 10.1016/j.cam.2013.06.039.
|
|
[12]
|
F. Huang and F. Liu, The fundamental solution of the space-time fractional advection-dispersion equation, J. Appl. Math. Comput., 19 (2005), 233-245.
|
|
[13]
|
C. E. Kees, I. Akkerman, M. W. Farthing and Y. Bazilevs, A conservative level set method suitable for variable-order approximations and unstructured meshes, J. Comput. Phys., 230 (2011), 4536-4558.
doi: 10.1016/j.jcp.2011.02.030.
|
|
[14]
|
X.-L. Lin, M. K. Ng and H.-W. Sun, A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations, J. Comput. Phys., 336 (2017), 69-86.
doi: 10.1016/j.jcp.2017.02.008.
|
|
[15]
|
F. Liu, V. V. Anh, I. Turner and P. Zhuang, Time fractional advection dispersion equation, J. Appl. Math. Comput., 13 (2003), 233-245.
doi: 10.1007/BF02936089.
|
|
[16]
|
F. Liu, P. Zhuang, V. Anh, I. Turner and K. Burra, Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput., 191 (2007), 12-20.
doi: 10.1016/j.amc.2006.08.162.
|
|
[17]
|
Q. Liu, F. Liu, I. Turner and V. Anh, Approximation of the L$\ddot{e}$vy-Feller advection-dispersion process by random walk and finite difference method, J. Comput. Phys., 222 (2007), 57-70.
doi: 10.1016/j.jcp.2006.06.005.
|
|
[18]
|
R. L. Magin and C. Ingo, Entropy and information in a fractional order model of anomalous diffusion, IFAC Proc., 45 (2012), 428-433.
doi: 10.3182/20120711-3-BE-2027.00063.
|
|
[19]
|
M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations, J. Comput. Appl. Math., 172 (2004), 65-77.
doi: 10.1016/j.cam.2004.01.033.
|
|
[20]
|
R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), 1-77.
doi: 10.1016/S0370-1573(00)00070-3.
|
|
[21]
|
K. Mikula, M. Ohlberger and J. Urbán, Inflow-implicit/outflow-explicit finite volume methods for solving advection equations, Appl. Numer. Math., 85 (2014), 16-37.
doi: 10.1016/j.apnum.2014.06.002.
|
|
[22]
|
K. Mikula and M. Ohlberger, A new level set method for motion in normal direction based on a semi-implicit forward-backward diffusion approach, SIAM J. Sci. Comp., 32 (2010), 1527-1544.
doi: 10.1137/09075946X.
|
|
[23]
|
S. T. Mohyud-Din, T. Akram, M. Abbas, A. I. Ismail and N. H. M. Ali, A fully implicit finite difference scheme based on extended cubic B-splines for time fractional advection-diffusion equation, Adv. Differ. Equ., (2018), 109.
doi: 10.1186/s13662-018-1537-7.
|
|
[24]
|
S. Momani and Z. Odibat, Numerical solutions of the space-time fractional advection-dispersion equation, Numer. Meth. Part. Differ. Equat., 24 (2008), 1416-1429.
doi: 10.1002/num.20324.
|
|
[25]
|
R. A. Mundewadirk and S. Kumbinarasaiah, Numerical solution of Abel's integral equations using Hermite wavelet, Applied Mathematics and Nonlinear Sciences, 4 (2019), 169-180.
doi: 10.2478/AMNS.2019.1.00017.
|
|
[26]
|
Y. Povstenko and T. Kyrylych, Two approaches to obtaining the space-time fractional advection-diffusion Equation, Entropy, 19 (2017), 297.
doi: 10.3390/e19070297.
|
|
[27]
|
S. Arshad, D. Baleanu, J. Huang, M. M. Al Qurashi, Y. Tang adn Y. Zhao, Finite difference method for time-space fractional advection-diffusion equations with riesz derivative, Entropy, 20 (2018), 321.
doi: 10.3390/e20050321.
|
|
[28]
|
N. K. Tripathi, S. Das, S. H. Ong, H. Jafari and M. A. Qurashi, Solution of higher order nonlinear time-fractional reaction diffusion equation, Entropy, 18 (2016), 329.
doi: 10.3390/e18090329.
|
|
[29]
|
Y. Wang, S. Simakhina and M. Sussman, A hybrid level set-volume constraint method for incompressible two-phase flow, J. Comp. Phys., 231 (2012), 6438-6471.
doi: 10.1016/j.jcp.2012.06.014.
|
|
[30]
|
A. Yokus and S. Gülbahar, Numerical solutions with linearization techniques of the fractional Harry Dym equation, Applied Mathematics and Nonlinear Sciences, 4 (2019), 35-42.
doi: 10.2478/AMNS.2019.1.00004.
|
|
[31]
|
Q. Zhang, Fully discrete convergence analysis of non-linear hyperbolic equations based on finite element analysis, Applied Mathematics and Nonlinear Sciences, 4 (2019), 433-444.
doi: 10.2478/AMNS.2019.2.00041.
|
|
[32]
|
G. H. Zheng and T. Wei, Spectral regularization method for a Cauchy problem of the time fractional advection-dispersion equation, J. Comput. Appl. Math., 233 (2010), 2631-2640.
doi: 10.1016/j.cam.2009.11.009.
|