• Previous Article
    A novel model for the contamination of a system of three artificial lakes
  • DCDS-S Home
  • This Issue
  • Next Article
    Stochastic dynamics of the FitzHugh-Nagumo neuron model through a modified Van der Pol equation with fractional-order term and Gaussian white noise excitation
July  2021, 14(7): 2245-2260. doi: 10.3934/dcdss.2021058

Dynamical behaviors and oblique resonant nonlinear waves with dual-power law nonlinearity and conformable temporal evolution

1. 

Department of Mathematics, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh

2. 

Department of Electrical and Electronic Engineering, International Islamic University Chittagong, Chattogram-4318, Bangladesh

3. 

Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong-4349, Bangladesh

4. 

Division of Applied Mathematics, Thu Dau Mot University, Binh Duong Province, Vietnam

5. 

Department of Medical Research, China Medical University Hospital Taichung 40402, Taiwan

6. 

Department of Sciences, École Normale Supérieure, Moulay Ismail University of Meknes, Morocco

* Corresponding author: Zakia Hammouch, email : hammouch_zakia@tdmu.edu.vn

Received  May 2019 Revised  September 2020 Published  May 2021

In this article, the oblique resonant traveling waves and dynamical behaviors of (2+1)-dimensional Nonlinear Schrödinger equation along with dual-power law nonlinearity, and fractal conformable temporal evolution are reported. The considered equation is converted to an ordinary differential equation by taking the traveling variable wave transform and properties of Khalil's conformable derivative into account. The modified Kudryashov method is implemented to divulge the oblique resonant traveling wave of such an equation. It is found that the obliqueness is only affected on width, but not on amplitude and phase patriots of resonant nonlinear propagating wave dynamics. The research outcomes are very helpful for analyzing the obliquely propagating nonlinear resonant wave phenomena and their dynamical behaviors in several nonlinear systems having Madelung fluids and optical bullets.

Citation: Md. Golam Hafez, Sayed Allamah Iqbal, Asaduzzaman, Zakia Hammouch. Dynamical behaviors and oblique resonant nonlinear waves with dual-power law nonlinearity and conformable temporal evolution. Discrete & Continuous Dynamical Systems - S, 2021, 14 (7) : 2245-2260. doi: 10.3934/dcdss.2021058
References:
[1]

K. Ait Touchent et al., Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal and Fractional, 2 (2018), 22. Google Scholar

[2]

F. Belgacem et al., New and Extended Applications of the Natural and Sumudu Transforms: Fractional Diffusion and Stokes Fluid Flow Realms, Advances in Real and Complex Analysis with Applications. Birkhauser, Singapore, 2017. Google Scholar

[3]

A. Biswas, Quasi-stationary optical solitons with dual-power law nonlinearity, Optics Communications, 235 (2004), 183-194.   Google Scholar

[4]

A. Biswas, Soliton solutions of the perturbed resonant nonlinear Schrodinger's equation with full nonlinearity by semi-inverse variational principle, Quantum Phys. Lett, 1 (2012), 79-89.   Google Scholar

[5]

D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev., 85 (1952), 166-179.  doi: 10.1103/PhysRev.85.166.  Google Scholar

[6]

M. EslamiM. Mirzazadeh and A. Biswas, Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time-dependent coefficients by simplest equation approach, Journal of Modern Optics, 60 (2013), 1627-1636.   Google Scholar

[7]

F. Ferdous and M. G. Hafez, Nonlinear time fractional Korteweg-de Vries equations for the interaction of wave phenomena in fluid-filled elastic tubes, The European Physical Journal Plus, 133 (2018), 384. doi: 10.1140/epjp/i2018-12195-6.  Google Scholar

[8]

F. Ferdous, Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized $\exp(-\phi(\xi))$-expansion, Optik, 178 (2019), 439-448.   Google Scholar

[9]

M. M. Ghalib, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 683-693.  doi: 10.3934/dcdss.2020037.  Google Scholar

[10]

M. G. Hafez, Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas, Astrophys. Space Sci., 365 (2020), Paper No. 78, 11 pp. doi: 10.1007/s10509-020-03791-9.  Google Scholar

[11]

M. G. Hafez, Exact solutions to the (3+1)-dimensional coupled Klein-Gordon-Zakharov equation using $\exp(-\phi(\xi))$-expansion method, Alexandria Engineering Journal, 55 (2016), 1635-1645.   Google Scholar

[12]

M. G. HafezR. Sakthivel and M. R. Talukder, Some new electrostatic potential functions used to analyze the ion-acoustic waves in a Thomas Fermi plasma with degenerate electrons, Chinese Journal of Physics, 35 (2015), 1-13.   Google Scholar

[13]

M. G. HafezM. R. Talukder and M. H. Ali, New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma, Waves in Random and Complex Media, 26 (2016), 68-80.  doi: 10.1080/17455030.2015.1111543.  Google Scholar

[14]

Z. Hammouch and T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal MESA, 5 (2014), 489-498.   Google Scholar

[15]

Z. Hammouch and T. Mekkaoui, Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions, International Journal of Applied Mathematical Research, 1 (2012), 206-212.   Google Scholar

[16]

Z. Hammouch, T. Mekkaoui and P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2+1) dimensions with time-fractional conformable derivative, The European Physical Journal Plus, 133 (2018), 248. Google Scholar

[17]

K. Hosseini and R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Waves in Random and Complex Media, 27 (2017), 628-636.  doi: 10.1080/17455030.2017.1296983.  Google Scholar

[18]

K. Hosseini, New optical solitons of cubic-quartic nonlinear Schrodinger equation, Optik, 157 (2018), 1101-1105.   Google Scholar

[19]

K. Hosseini, Resonant optical solitons with perturbation terms and fractional temporal evolution using improved $\tan(\phi(\eta)/2)$-expansion method and exp function approach, Optik, 158 (2018), 933-939.   Google Scholar

[20]

A. Houwe et al., Nonlinear Schrodingers equations with cubic nonlinearity: M-derivative soliton solutions by $\exp (-\Phi (\xi)) $-Expansion method, https://www.eprints.org/, 2019. Google Scholar

[21]

M. Ilie MousaJ. Biazar and Z. Ayati., Resonant solitons to the nonlinear Schrodinger equation with different forms of nonlinearities, Optik, 164 (2018), 201-209.   Google Scholar

[22]

T. Iizuka and Y. S. Kivshar, Optical gap solitons in nonresonant quadratic media, Phys. Rev. E, 59 (1999), 7148-7151.  doi: 10.1103/PhysRevE.59.7148.  Google Scholar

[23]

R. Khalil, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar

[24]

J.-H. Lee and O. K. Pashaev, Solitons of the resonant nonlinear Schrodinger equation with nontrivial boundary conditions: Hirota bilinear method, Theoret. and Math. Phys., 152 (2007), 991-1003.  doi: 10.1007/s11232-007-0083-3.  Google Scholar

[25]

J. H. Lee, The resonant nonlinear Schrodinger equation in cold plasma physics : Application of Backlund-Darboux transformations and superposition principles, Journal of Plasma Physics, 73 (2007), 257-272.   Google Scholar

[26]

H. LiJ. W. Haus and P. P. Banerjee, Application of transfer matrix method to second-harmonic generation in nonlinear photonic bandgap structures: Oblique incidence, JOSA B, 32 (2015), 1456-1462.  doi: 10.1364/JOSAB.32.001456.  Google Scholar

[27]

B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684-693.  doi: 10.1016/j.jmaa.2012.05.066.  Google Scholar

[28]

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, N.J. 1960.  Google Scholar

[29]

O. K. Pashaev and L. Jyh-Hao, Resonance solitons as black holes in Madelung fluid, Modern Physics Letters A, 17 (2002), 1601-1619.   Google Scholar

[30]

K. Porsezian, Soliton models in resonant and nonresonant optical fibers, Pramana, 57 (2001), 1003-1039.   Google Scholar

[31]

L. Singh, S. Konar and A. K. Sharma, Resonant cross-modulation of two laser beams in a semiconductor slab, Journal of Physics D: Applied Physics, 34 (2001), 2237. Google Scholar

[32]

D. V. Skryabin and W. J. Firth, Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media, Phys. Rev. E, 58 (1998), 3916. doi: 10.1103/PhysRevE.58.3916.  Google Scholar

[33]

L. Wenjun and K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana, 81 (2013), 377-384.   Google Scholar

[34]

B. Zheng, $(G'/G)$-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys. (Beijing), 58 (2012), 623-630.  doi: 10.1088/0253-6102/58/5/02.  Google Scholar

show all references

References:
[1]

K. Ait Touchent et al., Implementation and convergence analysis of homotopy perturbation coupled with sumudu transform to construct solutions of local-fractional PDEs, Fractal and Fractional, 2 (2018), 22. Google Scholar

[2]

F. Belgacem et al., New and Extended Applications of the Natural and Sumudu Transforms: Fractional Diffusion and Stokes Fluid Flow Realms, Advances in Real and Complex Analysis with Applications. Birkhauser, Singapore, 2017. Google Scholar

[3]

A. Biswas, Quasi-stationary optical solitons with dual-power law nonlinearity, Optics Communications, 235 (2004), 183-194.   Google Scholar

[4]

A. Biswas, Soliton solutions of the perturbed resonant nonlinear Schrodinger's equation with full nonlinearity by semi-inverse variational principle, Quantum Phys. Lett, 1 (2012), 79-89.   Google Scholar

[5]

D. Bohm, A suggested interpretation of the quantum theory in terms of hidden variables, Phys. Rev., 85 (1952), 166-179.  doi: 10.1103/PhysRev.85.166.  Google Scholar

[6]

M. EslamiM. Mirzazadeh and A. Biswas, Soliton solutions of the resonant nonlinear Schrodinger's equation in optical fibers with time-dependent coefficients by simplest equation approach, Journal of Modern Optics, 60 (2013), 1627-1636.   Google Scholar

[7]

F. Ferdous and M. G. Hafez, Nonlinear time fractional Korteweg-de Vries equations for the interaction of wave phenomena in fluid-filled elastic tubes, The European Physical Journal Plus, 133 (2018), 384. doi: 10.1140/epjp/i2018-12195-6.  Google Scholar

[8]

F. Ferdous, Oblique resonant optical solitons with Kerr and parabolic law nonlinearities and fractional temporal evolution by generalized $\exp(-\phi(\xi))$-expansion, Optik, 178 (2019), 439-448.   Google Scholar

[9]

M. M. Ghalib, Analytical results on the unsteady rotational flow of fractional-order non-Newtonian fluids with shear stress on the boundary, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 683-693.  doi: 10.3934/dcdss.2020037.  Google Scholar

[10]

M. G. Hafez, Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas, Astrophys. Space Sci., 365 (2020), Paper No. 78, 11 pp. doi: 10.1007/s10509-020-03791-9.  Google Scholar

[11]

M. G. Hafez, Exact solutions to the (3+1)-dimensional coupled Klein-Gordon-Zakharov equation using $\exp(-\phi(\xi))$-expansion method, Alexandria Engineering Journal, 55 (2016), 1635-1645.   Google Scholar

[12]

M. G. HafezR. Sakthivel and M. R. Talukder, Some new electrostatic potential functions used to analyze the ion-acoustic waves in a Thomas Fermi plasma with degenerate electrons, Chinese Journal of Physics, 35 (2015), 1-13.   Google Scholar

[13]

M. G. HafezM. R. Talukder and M. H. Ali, New analytical solutions for propagation of small but finite amplitude ion-acoustic waves in a dense plasma, Waves in Random and Complex Media, 26 (2016), 68-80.  doi: 10.1080/17455030.2015.1111543.  Google Scholar

[14]

Z. Hammouch and T. Mekkaoui, Traveling-wave solutions of the generalized Zakharov equation with time-space fractional derivatives, Journal MESA, 5 (2014), 489-498.   Google Scholar

[15]

Z. Hammouch and T. Mekkaoui, Travelling-wave solutions for some fractional partial differential equation by means of generalized trigonometry functions, International Journal of Applied Mathematical Research, 1 (2012), 206-212.   Google Scholar

[16]

Z. Hammouch, T. Mekkaoui and P. Agarwal, Optical solitons for the Calogero-Bogoyavlenskii-Schiff equation in (2+1) dimensions with time-fractional conformable derivative, The European Physical Journal Plus, 133 (2018), 248. Google Scholar

[17]

K. Hosseini and R. Ansari, New exact solutions of nonlinear conformable time-fractional Boussinesq equations using the modified Kudryashov method, Waves in Random and Complex Media, 27 (2017), 628-636.  doi: 10.1080/17455030.2017.1296983.  Google Scholar

[18]

K. Hosseini, New optical solitons of cubic-quartic nonlinear Schrodinger equation, Optik, 157 (2018), 1101-1105.   Google Scholar

[19]

K. Hosseini, Resonant optical solitons with perturbation terms and fractional temporal evolution using improved $\tan(\phi(\eta)/2)$-expansion method and exp function approach, Optik, 158 (2018), 933-939.   Google Scholar

[20]

A. Houwe et al., Nonlinear Schrodingers equations with cubic nonlinearity: M-derivative soliton solutions by $\exp (-\Phi (\xi)) $-Expansion method, https://www.eprints.org/, 2019. Google Scholar

[21]

M. Ilie MousaJ. Biazar and Z. Ayati., Resonant solitons to the nonlinear Schrodinger equation with different forms of nonlinearities, Optik, 164 (2018), 201-209.   Google Scholar

[22]

T. Iizuka and Y. S. Kivshar, Optical gap solitons in nonresonant quadratic media, Phys. Rev. E, 59 (1999), 7148-7151.  doi: 10.1103/PhysRevE.59.7148.  Google Scholar

[23]

R. Khalil, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70.  doi: 10.1016/j.cam.2014.01.002.  Google Scholar

[24]

J.-H. Lee and O. K. Pashaev, Solitons of the resonant nonlinear Schrodinger equation with nontrivial boundary conditions: Hirota bilinear method, Theoret. and Math. Phys., 152 (2007), 991-1003.  doi: 10.1007/s11232-007-0083-3.  Google Scholar

[25]

J. H. Lee, The resonant nonlinear Schrodinger equation in cold plasma physics : Application of Backlund-Darboux transformations and superposition principles, Journal of Plasma Physics, 73 (2007), 257-272.   Google Scholar

[26]

H. LiJ. W. Haus and P. P. Banerjee, Application of transfer matrix method to second-harmonic generation in nonlinear photonic bandgap structures: Oblique incidence, JOSA B, 32 (2015), 1456-1462.  doi: 10.1364/JOSAB.32.001456.  Google Scholar

[27]

B. Lu, The first integral method for some time fractional differential equations, J. Math. Anal. Appl., 395 (2012), 684-693.  doi: 10.1016/j.jmaa.2012.05.066.  Google Scholar

[28]

V. V. Nemytskii and V. V. Stepanov, Qualitative Theory of Differential Equations, Princeton University Press, Princeton, N.J. 1960.  Google Scholar

[29]

O. K. Pashaev and L. Jyh-Hao, Resonance solitons as black holes in Madelung fluid, Modern Physics Letters A, 17 (2002), 1601-1619.   Google Scholar

[30]

K. Porsezian, Soliton models in resonant and nonresonant optical fibers, Pramana, 57 (2001), 1003-1039.   Google Scholar

[31]

L. Singh, S. Konar and A. K. Sharma, Resonant cross-modulation of two laser beams in a semiconductor slab, Journal of Physics D: Applied Physics, 34 (2001), 2237. Google Scholar

[32]

D. V. Skryabin and W. J. Firth, Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media, Phys. Rev. E, 58 (1998), 3916. doi: 10.1103/PhysRevE.58.3916.  Google Scholar

[33]

L. Wenjun and K. Chen, The functional variable method for finding exact solutions of some nonlinear time-fractional differential equations, Pramana, 81 (2013), 377-384.   Google Scholar

[34]

B. Zheng, $(G'/G)$-expansion method for solving fractional partial differential equations in the theory of mathematical physics, Commun. Theor. Phys. (Beijing), 58 (2012), 623-630.  doi: 10.1088/0253-6102/58/5/02.  Google Scholar

Figure 1.  Resonant kink-shaped structures of $ |\Psi| $ for (a) $ \lambda = 0.1 $ (red) and $ \lambda = 0.9 $ (orange), with $ t = 50 $ and $ \theta = 30^0 $, (b) $ t = 1 $ (red) and $ t = 200 $ (orange) with $ \lambda = 0.5 $ and $ \theta = 30^0 $, (c) with respect $ x $ and $ \theta $ keeping $ z $-axis constant ($ \theta = 30^0 $, $ \lambda = 0.5 $, $ t = 10 $), and (d) with respect $ z $ and $ \theta $ keeping x-axis constant ($ \theta = 30^0 $, $ \lambda = 0.5 $, $ t = 10 $). The remaining parameters are selected as $ \eta = -1 $, $ \sigma = 0.5 $, $ N = 1 $, $ \delta = 2 $, $ \rho = -0.5 $, $ k = 0.5 $ and $ d = 1 $
Figure 2.  Resonant kink-shaped structures of (a) $ |\Psi| $ for $ \theta = 5^0 $ (red) and $ \theta = 30^0 $ (orange), (b) $ |\Psi| $ for $ \theta = 55^0 $ (orange) and $ \theta = 85^0 $ (red), (c) real part of $ |\Psi| $ with $ \theta = 30^0 $ and (d) imaginary part of $ |\Psi| $ with $ \theta = 30^0 $. The remaining parameters are selected as $ \lambda = 0.5 $, $ \eta = -1 $, $ \sigma = 0.5 $, $ N = 1 $, $ \delta = 2 $, $ \rho = -0.5 $, $ k = 0.5 $, $ t = 10 $ and $ d = 1 $
Figure 3.  Resonant periodic wave structures of (a) $ |\Psi| $ for $ \theta = 45^0 $, (b) $ |\Psi| $ for $ \theta = 80^0 $ and (c) $ |\Psi| $ for $ \theta = 45^0 $ (red) and $ \theta = 80^0 $ (orange). The remaining parameters are selected as $ \eta = -0.1 $, $ \sigma = 0.5 $, $ N = 1.5 $, $ \delta = 1 $, $ \rho = 0.09 $, $ k = 1 $, $ t = 1 $ and $ d = 1 $
Figure 4.  The phase portraits and its vector fields of nonlinear dynamical system as mentioned in Eq. (12) by assuming different values of $ \rho = 0.09 $ (Figs. 4(a) and (b)), $ \rho = 0.01 $ (Figs. 4(c) and (d)) and $ \rho = -0.09 $ (Figs. 4(e) and (f)) with $ N = 0.5 $, $ \omega = 2 $, $ \eta = 0.1 $, $ k = 0.4 $, $ \delta = 1 $ and $ \sigma = 0.5 $
Figure 5.  The (a) phase portrait and its (b) vector fields of the nonlinear dynamical system as mentioned in Eq.(12) by assuming for the values of parameters $ N = 0.5 $, $ \omega = -2 $, $ \eta = 0.1 $, $ k = 0.4 $, $ \delta = 1 $, $ \sigma = 0.5 $, and $ \rho = 0.09 $
Figure 6.  The (a) phase portrait and its (b) vector fields of the nonlinear dynamical system as mentioned in Eq.(12) by assuming for the values of parameters $ N = 1.5 $, $ \omega = 1 $, $ \eta = 0.1 $, $ k = 0.4 $, $ \delta = 1 $, $ \sigma = 0.5 $, and $ \rho = 0.09 $
Figure 7.  The (a) phase portrait and its (b) vector fields of the nonlinear dynamical system as mentioned in Eq.(12) by assuming for the values of parameters $ N = 3 $, $ \omega = 1 $, $ \eta = 0.1 $, $ k = 0.4 $, $ \delta = 1 $, $ \sigma = 0.5 $, and $ \rho = 0.09 $
[1]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2020, 13 (11) : 3083-3097. doi: 10.3934/dcdss.2020113

[2]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

[3]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[4]

Jaeyoung Byeon, Louis Jeanjean. Multi-peak standing waves for nonlinear Schrödinger equations with a general nonlinearity. Discrete & Continuous Dynamical Systems, 2007, 19 (2) : 255-269. doi: 10.3934/dcds.2007.19.255

[5]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[6]

J. Cuevas, J. C. Eilbeck, N. I. Karachalios. Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete & Continuous Dynamical Systems, 2008, 21 (2) : 445-475. doi: 10.3934/dcds.2008.21.445

[7]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[8]

Yoshiki Maeda, Noboru Okazawa. Schrödinger type evolution equations with monotone nonlinearity of non-power type. Discrete & Continuous Dynamical Systems - S, 2013, 6 (3) : 771-781. doi: 10.3934/dcdss.2013.6.771

[9]

Thierry Colin, Pierre Fabrie. Semidiscretization in time for nonlinear Schrödinger-waves equations. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 671-690. doi: 10.3934/dcds.1998.4.671

[10]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[11]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[12]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[13]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[14]

Michal Fečkan, Vassilis M. Rothos. Travelling waves of forced discrete nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1129-1145. doi: 10.3934/dcdss.2011.4.1129

[15]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[16]

Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control & Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016

[17]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[18]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[19]

Nakao Hayashi, Tohru Ozawa. Schrödinger equations with nonlinearity of integral type. Discrete & Continuous Dynamical Systems, 1995, 1 (4) : 475-484. doi: 10.3934/dcds.1995.1.475

[20]

Zhi Chen, Xianhua Tang, Ning Zhang, Jian Zhang. Standing waves for Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 6103-6129. doi: 10.3934/dcds.2019266

2019 Impact Factor: 1.233

Article outline

Figures and Tables

[Back to Top]