# American Institute of Mathematical Sciences

July  2021, 14(7): 2455-2469. doi: 10.3934/dcdss.2021060

## Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems

 1 Institute for Groundwater Studies, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9300, South Africa 2 Department of Mathematical Sciences, Federal University of Technology, PMB 704, Akure, Ondo State, Nigeria 3 CONACyT-Tecnológico Nacional de México/CENIDET, Interior Internado Palmira S/N, Col. Palmira, C.P. 62490, Cuernavaca, Morelos, México

* Corresponding author: kmowolabi@futa.edu.ng (Kolade M. Owolabi)

Received  June 2019 Revised  July 2019 Published  July 2021 Early access  May 2021

Fund Project: A. Atangana would like to thank NRF for their support, J. F. Gómez Aguilar acknowledges the support provided by CONACyT: Cátedras CONACyT para jóvenes investigadores 2014 and SNI-CONACyT

A recently proposed numerical scheme for solving nonlinear ordinary differential equations with integer and non-integer Liouville-Caputo derivative is applied to three systems with chaotic solutions. The Adams-Bashforth scheme involving Lagrange interpolation and the fundamental theorem of fractional calculus. We provide the existence and uniqueness of solutions, also the convergence result is stated. The proposed method is applied to several examples that are shown to have unique solutions. The scheme converges to the classical Adams-Bashforth method when the fractional orders of the derivatives converge to integers.

Citation: Kolade M. Owolabi, Abdon Atangana, Jose Francisco Gómez-Aguilar. Fractional Adams-Bashforth scheme with the Liouville-Caputo derivative and application to chaotic systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2455-2469. doi: 10.3934/dcdss.2021060
##### References:

show all references

##### References:
Numerical simulation for Eq. (31). In (a) depicts the classical chaotic attractor and (b-d) shows the classical phase portrait of system (31). In (e) depicts the strange chaotic attractor and (f-h) shows the phase portrait of system (31) for $p = 0.9$
Numerical simulation for Eq. (32). In (a) depicts the classical macroeconomic model with foreign capital investments and (b-d) shows the classical phase portrait of system (32). In (e) depicts the strange chaotic attractor and (f-h) shows the phase portrait of system (32) for $p = 0.95$
Numerical simulation for Eq. (33). In (a)-(c) depicts the time series and the phase portrait of system (33), respectively. In (d)-(f) depicts the time series and the phase portrait of system (33) for $p = 0.95$, respectively
Two and three dimensional projections for the fractional jerk system for $p = 0.93$
 [1] Yingwen Guo, Yinnian He. Fully discrete finite element method based on second-order Crank-Nicolson/Adams-Bashforth scheme for the equations of motion of Oldroyd fluids of order one. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2583-2609. doi: 10.3934/dcdsb.2015.20.2583 [2] Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Juan L. G. Guirao, Y. S. Hamed. Link theorem and distributions of solutions to uncertain Liouville-Caputo difference equations. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 427-440. doi: 10.3934/dcdss.2021083 [3] Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control and Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016 [4] Piotr Grabowski. On analytic semigroup generators involving Caputo fractional derivative. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022014 [5] Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using Caputo-Fabrizio derivative. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 975-993. doi: 10.3934/dcdss.2020057 [6] Xuping Xie, Feng Bao, Thomas Maier, Clayton Webster. Analytic continuation of noisy data using Adams Bashforth residual neural network. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 877-892. doi: 10.3934/dcdss.2021088 [7] Tran Bao Ngoc, Nguyen Huy Tuan, R. Sakthivel, Donal O'Regan. Analysis of nonlinear fractional diffusion equations with a Riemann-liouville derivative. Evolution Equations and Control Theory, 2022, 11 (2) : 439-455. doi: 10.3934/eect.2021007 [8] Kaouther Bouchama, Yacine Arioua, Abdelkrim Merzougui. The Numerical Solution of the space-time fractional diffusion equation involving the Caputo-Katugampola fractional derivative. Numerical Algebra, Control and Optimization, 2021  doi: 10.3934/naco.2021026 [9] Iman Malmir. Caputo fractional derivative operational matrices of Legendre and Chebyshev wavelets in fractional delay optimal control. Numerical Algebra, Control and Optimization, 2022, 12 (2) : 395-426. doi: 10.3934/naco.2021013 [10] Pierre Aime Feulefack, Jean Daniel Djida, Atangana Abdon. A new model of groundwater flow within an unconfined aquifer: Application of Caputo-Fabrizio fractional derivative. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3227-3247. doi: 10.3934/dcdsb.2018317 [11] Ruiyang Cai, Fudong Ge, Yangquan Chen, Chunhai Kou. Regional gradient controllability of ultra-slow diffusions involving the Hadamard-Caputo time fractional derivative. Mathematical Control and Related Fields, 2020, 10 (1) : 141-156. doi: 10.3934/mcrf.2019033 [12] Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3659-3683. doi: 10.3934/dcdss.2021023 [13] Huy Tuan Nguyen, Huu Can Nguyen, Renhai Wang, Yong Zhou. Initial value problem for fractional Volterra integro-differential equations with Caputo derivative. Discrete and Continuous Dynamical Systems - B, 2021, 26 (12) : 6483-6510. doi: 10.3934/dcdsb.2021030 [14] Platon Surkov. Dynamical estimation of a noisy input in a system with a Caputo fractional derivative. The case of continuous measurements of a part of phase coordinates. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022020 [15] Shakir Sh. Yusubov, Elimhan N. Mahmudov. Optimality conditions of singular controls for systems with Caputo fractional derivatives. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021182 [16] Chun Wang, Tian-Zhou Xu. Stability of the nonlinear fractional differential equations with the right-sided Riemann-Liouville fractional derivative. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 505-521. doi: 10.3934/dcdss.2017025 [17] Daomin Cao, Guolin Qin. Liouville type theorems for fractional and higher-order fractional systems. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2269-2283. doi: 10.3934/dcds.2020361 [18] Biao Zeng. Existence results for fractional impulsive delay feedback control systems with Caputo fractional derivatives. Evolution Equations and Control Theory, 2022, 11 (1) : 239-258. doi: 10.3934/eect.2021001 [19] Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 [20] Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

2020 Impact Factor: 2.425