[1]
|
B. Amaziane, A. Bergam, M. El Ossmani and Z. Mghazli, A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, J. Numer. Meth. Fluids, 59 (2009), 259-284.
doi: 10.1002/fld.1456.
|
[2]
|
P. Auger and R. Bravo, Methods of aggregation of variables in population dynamics, Comptes Rendus de l'Académie des Sciences - Series Ⅲ - Sciences de la Vie, 323 (2000), 665-674.
doi: 10.1016/S0764-4469(00)00182-7.
|
[3]
|
P. Auger, J. C. Poggiale and E. Sánchez, A review on spatial aggregation methods involving several time scales, Ecological Complexity, 10 (2012), 12-25.
doi: 10.1016/j.ecocom.2011.09.001.
|
[4]
|
A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations, Math. Comp, 74 (2005), 1117-1138.
doi: 10.1090/S0025-5718-04-01697-7.
|
[5]
|
A. Bergam, A. Chakib, A. Nachaoui and M. Nachaoui, Adaptive mesh techniques based on a posteriori error estimates for an inverse Cauchy problem, Applied Mathematics and Computation, 346 (2019), 865-878.
doi: 10.1016/j.amc.2018.09.069.
|
[6]
|
A. El Harrak and A. Bergam, Preserving Finite-Volume Schemes for Two-Time Reaction-Diffusion Model, Applied Mathematics & Information Sciences, 14 (2020), 41-50.
doi: 10.18576/amis/140105.
|
[7]
|
R. Eymard, T. Gallouöt and R. Herbin, Finite volume methods, Hand-book of Numerical Analysis, P.G. Ciarlet and J.L. Lions eds, North-Holland, Ⅶ (2000), 713-1020.
doi: 10.1086/phos.67.4.188705.
|
[8]
|
M. Fortin, Estimation a posteriori et adaptation de maillages, Revue Européenne des Eléments Finis, 9 (2000).
|
[9]
|
W. Gurney and R. M. Nisbet, Ecological Dynamics,, Oxford University Press, 1998.
|
[10]
|
Z. Mghazli, R. Verfürth and A. Bergam, Estimateurs a posteriori d'un schéma de volumes finis pour un probléme non linéaire, Numerische Mathematik, 95 (2003), 599-624.
doi: 10.1007/s00211-003-0460-2.
|
[11]
|
J. D. Murray, Mathematical Biology: Ⅰ. an Introduction (Interdisciplinary Applied Mathematics), , Springer-Verlag, New York, 2002.
|
[12]
|
E. Sánchez, P. Auger and J. C. Poggiale, Two-time scales in spatially structured models of population dynamics: A semigroup approach, Journal of Mathematical Analysis and Applications, 375 (2011), 149-165.
doi: 10.1016/j.jmaa.2010.08.014.
|
[13]
|
D. Tilman and P. Kareiva, Spatial ecology: The role of space in population dynamics and interspecific interactions (MPB-30), Princeton University Press, 30 (2018).
|
[14]
|
R. Verfürth, A posteriori error estimates for non-stationary non-linear convection-diffusion equations, Calcolo, 55 (2018), Paper No. 20, 18 pp.
doi: 10.1007/s10092-018-0263-6.
|