June  2021, 14(6): 1899-1916. doi: 10.3934/dcdss.2021064

Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space

School of Mathematics and Statistics, Lanzhou University, Lanzhou, 730000, China

* Corresponding author: Dun Zhao

Received  December 2020 Revised  March 2021 Published  June 2021 Early access  May 2021

Fund Project: This work is supported by NSFC under Grant No. 12075102 and 11971212

We consider the following fractional Schrödinger-Poisson equation with combined nonlinearities
$ \begin{equation*} \begin{cases} (-\Delta)^su+\phi u = |u|^{s^*-2}u+\mu|u|^{p-2}u \,\,\,\rm{in}\ \mathbb{R}^3,\\ -\Delta \phi = 4\pi u^2\ \rm{in}\ \mathbb{R}^3, \end{cases} \end{equation*} $
where
$ s\in(\frac{3}{4},1) $
,
$ \mu>0 $
,
$ p\in(3,s^*) $
and
$ s^* = \frac{6}{3-2s} $
. By the perturbation approach we prove the existence of the ground state solution in fractional Coulomb-Sobolev space.
Citation: Hangzhou Hu, Yuan Li, Dun Zhao. Ground state for fractional Schrödinger-Poisson equation in Coulomb-Sobolev space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1899-1916. doi: 10.3934/dcdss.2021064
References:
[1]

C. BardosL. ErdösF. GolseN. Mauser and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris, 334 (2002), 515-520.  doi: 10.1016/S1631-073X(02)02253-7.  Google Scholar

[2]

J. BellazziniM. GhimentiC. MercuriV. Moroz and J. Van Schaftingen, Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. Amer. Math. Soc., 370 (2018), 8285-8310.  doi: 10.1090/tran/7426.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[5]

X. J. Chang and Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations, 256 (2014), 2965-2992.  doi: 10.1016/j.jde.2014.01.027.  Google Scholar

[6]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb R^N$, Lecture Notes. Vol. 15 Scuola Normale Superiore di Pisa (New Series). Pisa: Edizioni della Normale; 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[7]

M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positve solutions of $(-\Delta)^su+u = u^p$ in $\mathbb{R}^N$ when $s$ is close to 1, Comm. Math. Phys., 329 (2014), 383-404.  doi: 10.1007/s00220-014-1919-y.  Google Scholar

[8]

M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.  doi: 10.1088/0951-7715/28/6/1937.  Google Scholar

[9]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A: Math., 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[10]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[11]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[12]

I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger-Poisson-Slater problem, Comm. Contemp. Math., 14 (2012), 1250003, 22pp. doi: 10.1142/S0219199712500034.  Google Scholar

[13]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[14]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[15]

K. X. Li, Existence of non-trivial solutions for nonlinear fractional Schrödinger-Poisson equations, Appl. Math. Lett., 72 (2017), 1-9.  doi: 10.1016/j.aml.2017.03.023.  Google Scholar

[16]

Y. Li, D. Zhao and Q. X. Wang, Ground state solution and nodal solution for fractional nonlinear Schrödinger equation with indefinite potential, J. Math. Phys., 60 (2019), 041501, 15pp. doi: 10.1063/1.5067377.  Google Scholar

[17]

S. B. Liu and S. Mosconi, On the Schrödinger-Poisson system with indefinite potential and $3$-sublinear nonlinearity, J. Differential Equations, 269 (2020), 689-712.  doi: 10.1016/j.jde.2019.12.023.  Google Scholar

[18]

Z. LiuZ. Zhang and S. Huang, Existence and nonexistence of positive solutions for a static Schrödinger-Poisson-Slater equation, J. Differential Equations, 266 (2019), 5912-5941.  doi: 10.1016/j.jde.2018.10.048.  Google Scholar

[19]

H. X. Luo and X. H. Tang, Ground state and multiple solutions for the fractional Schrödinger-Poisson system with critical Sobolev exponent, Nonlinear Anal. Real World Appl., 42 (2018), 24-52.  doi: 10.1016/j.nonrwa.2017.12.003.  Google Scholar

[20]

C, Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency,, Calc. Var. Partial Differential Equations, 55 (2016), Art. 146, 58 pp. doi: 10.1007/s00526-016-1079-3.  Google Scholar

[21]

E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.   Google Scholar

[22]

D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2018), 179-190.  doi: 10.1515/ans-2008-0106.  Google Scholar

[23]

D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.  Google Scholar

[24]

D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimun of potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.  Google Scholar

[25]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$,, J. Math. Phys., 54 (2013), 031501, 17pp. doi: 10.1063/1.4793990.  Google Scholar

[26]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun Pure Appl Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[28]

X. D. Shang and J. H. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.  Google Scholar

[29]

K. M. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.  Google Scholar

[30]

K. M. Teng, Ground state solutions for the nonlinear fractional Schrödinger-Poisson system, Appl. Anal., 98 (2019), 1959-1996.  doi: 10.1080/00036811.2018.1441998.  Google Scholar

[31]

M. Willem, Minimax Theorems, Birkhauser, Basel, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[32]

J. Zhang, On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75 (2012), 6391-6401.  doi: 10.1016/j.na.2012.07.008.  Google Scholar

[33]

J. Zhang, J. M. do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028, 16pp.  Google Scholar

show all references

References:
[1]

C. BardosL. ErdösF. GolseN. Mauser and H.-T. Yau, Derivation of the Schrödinger-Poisson equation from the quantum N-body problem, C. R. Math. Acad. Sci. Paris, 334 (2002), 515-520.  doi: 10.1016/S1631-073X(02)02253-7.  Google Scholar

[2]

J. BellazziniM. GhimentiC. MercuriV. Moroz and J. Van Schaftingen, Sharp Gagliardo-Nirenberg inequalities in fractional Coulomb-Sobolev spaces, Trans. Amer. Math. Soc., 370 (2018), 8285-8310.  doi: 10.1090/tran/7426.  Google Scholar

[3]

H. Brezis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc., 88 (1983), 486-490.  doi: 10.1090/S0002-9939-1983-0699419-3.  Google Scholar

[4]

X. Cabré and Y. Sire, Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23-53.  doi: 10.1016/j.anihpc.2013.02.001.  Google Scholar

[5]

X. J. Chang and Z. Q. Wang, Nodal and multiple solutions of nonlinear problems involving the fractional Laplacian, J. Differential Equations, 256 (2014), 2965-2992.  doi: 10.1016/j.jde.2014.01.027.  Google Scholar

[6]

S. Dipierro, M. Medina and E. Valdinoci, Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb R^N$, Lecture Notes. Vol. 15 Scuola Normale Superiore di Pisa (New Series). Pisa: Edizioni della Normale; 2017. doi: 10.1007/978-88-7642-601-8.  Google Scholar

[7]

M. M. Fall and E. Valdinoci, Uniqueness and nondegeneracy of positve solutions of $(-\Delta)^su+u = u^p$ in $\mathbb{R}^N$ when $s$ is close to 1, Comm. Math. Phys., 329 (2014), 383-404.  doi: 10.1007/s00220-014-1919-y.  Google Scholar

[8]

M. M. FallF. Mahmoudi and E. Valdinoci, Ground states and concentration phenomena for the fractional Schrödinger equation, Nonlinearity, 28 (2015), 1937-1961.  doi: 10.1088/0951-7715/28/6/1937.  Google Scholar

[9]

P. FelmerA. Quaas and J. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A: Math., 142 (2012), 1237-1262.  doi: 10.1017/S0308210511000746.  Google Scholar

[10]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbb{R}$, Acta Math., 210 (2013), 261-318.  doi: 10.1007/s11511-013-0095-9.  Google Scholar

[11]

R. L. FrankE. Lenzmann and L. Silvestre, Uniqueness of radial solutions for the fractional Laplacian, Comm. Pure Appl. Math., 69 (2016), 1671-1726.  doi: 10.1002/cpa.21591.  Google Scholar

[12]

I. Ianni and D. Ruiz, Ground and bound states for a static Schrödinger-Poisson-Slater problem, Comm. Contemp. Math., 14 (2012), 1250003, 22pp. doi: 10.1142/S0219199712500034.  Google Scholar

[13]

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298-305.  doi: 10.1016/S0375-9601(00)00201-2.  Google Scholar

[14]

N. Laskin, Fractional Schrödinger equation, Phys. Rev. E, 66 (2002), 056108, 7pp. doi: 10.1103/PhysRevE.66.056108.  Google Scholar

[15]

K. X. Li, Existence of non-trivial solutions for nonlinear fractional Schrödinger-Poisson equations, Appl. Math. Lett., 72 (2017), 1-9.  doi: 10.1016/j.aml.2017.03.023.  Google Scholar

[16]

Y. Li, D. Zhao and Q. X. Wang, Ground state solution and nodal solution for fractional nonlinear Schrödinger equation with indefinite potential, J. Math. Phys., 60 (2019), 041501, 15pp. doi: 10.1063/1.5067377.  Google Scholar

[17]

S. B. Liu and S. Mosconi, On the Schrödinger-Poisson system with indefinite potential and $3$-sublinear nonlinearity, J. Differential Equations, 269 (2020), 689-712.  doi: 10.1016/j.jde.2019.12.023.  Google Scholar

[18]

Z. LiuZ. Zhang and S. Huang, Existence and nonexistence of positive solutions for a static Schrödinger-Poisson-Slater equation, J. Differential Equations, 266 (2019), 5912-5941.  doi: 10.1016/j.jde.2018.10.048.  Google Scholar

[19]

H. X. Luo and X. H. Tang, Ground state and multiple solutions for the fractional Schrödinger-Poisson system with critical Sobolev exponent, Nonlinear Anal. Real World Appl., 42 (2018), 24-52.  doi: 10.1016/j.nonrwa.2017.12.003.  Google Scholar

[20]

C, Mercuri, V. Moroz and J. Van Schaftingen, Groundstates and radial solutions to nonlinear Schrödinger-Poisson-Slater equations at the critical frequency,, Calc. Var. Partial Differential Equations, 55 (2016), Art. 146, 58 pp. doi: 10.1007/s00526-016-1079-3.  Google Scholar

[21]

E. G. Murcia and G. Siciliano, Positive semiclassical states for a fractional Schrödinger-Poisson system, Differential Integral Equations, 30 (2017), 231-258.   Google Scholar

[22]

D. Ruiz and G. Siciliano, A note on the Schrödinger-Poisson-Slater equation on bounded domains, Adv. Nonlinear Stud., 8 (2018), 179-190.  doi: 10.1515/ans-2008-0106.  Google Scholar

[23]

D. Ruiz, On the Schrödinger-Poisson-Slater system: Behavior of minimizers, radial and nonradial cases, Arch. Ration. Mech. Anal., 198 (2010), 349-368.  doi: 10.1007/s00205-010-0299-5.  Google Scholar

[24]

D. Ruiz and G. Vaira, Cluster solutions for the Schrödinger-Poisson-Slater problem around a local minimun of potential, Rev. Mat. Iberoam., 27 (2011), 253-271.  doi: 10.4171/RMI/635.  Google Scholar

[25]

S. Secchi, Ground state solutions for nonlinear fractional Schrödinger equations in $\mathbb{R}^N$,, J. Math. Phys., 54 (2013), 031501, 17pp. doi: 10.1063/1.4793990.  Google Scholar

[26]

R. Servadei and E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67-102.  doi: 10.1090/S0002-9947-2014-05884-4.  Google Scholar

[27]

L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Commun Pure Appl Math., 60 (2007), 67-112.  doi: 10.1002/cpa.20153.  Google Scholar

[28]

X. D. Shang and J. H. Zhang, Ground states for fractional Schrödinger equations with critical growth, Nonlinearity, 27 (2014), 187-207.  doi: 10.1088/0951-7715/27/2/187.  Google Scholar

[29]

K. M. Teng, Existence of ground state solutions for the nonlinear fractional Schrödinger-Poisson system with critical Sobolev exponent, J. Differential Equations, 261 (2016), 3061-3106.  doi: 10.1016/j.jde.2016.05.022.  Google Scholar

[30]

K. M. Teng, Ground state solutions for the nonlinear fractional Schrödinger-Poisson system, Appl. Anal., 98 (2019), 1959-1996.  doi: 10.1080/00036811.2018.1441998.  Google Scholar

[31]

M. Willem, Minimax Theorems, Birkhauser, Basel, 1996. doi: 10.1007/978-1-4612-4146-1.  Google Scholar

[32]

J. Zhang, On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth, Nonlinear Anal., 75 (2012), 6391-6401.  doi: 10.1016/j.na.2012.07.008.  Google Scholar

[33]

J. Zhang, J. M. do Ó and M. Squassina, Schrödinger-Poisson systems with a general critical nonlinearity, Commun. Contemp. Math., 19 (2017), 1650028, 16pp.  Google Scholar

[1]

Qian Shen, Na Wei. Stability of ground state for the Schrödinger-Poisson equation. Journal of Industrial & Management Optimization, 2021, 17 (5) : 2805-2816. doi: 10.3934/jimo.2020095

[2]

Lun Guo, Wentao Huang, Huifang Jia. Ground state solutions for the fractional Schrödinger-Poisson systems involving critical growth in $ \mathbb{R} ^{3} $. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1663-1693. doi: 10.3934/cpaa.2019079

[3]

Xinsheng Du, Qi Li, Zengqin Zhao, Gen Li. Bound state solutions for fractional Schrödinger-Poisson systems. Mathematical Foundations of Computing, 2021  doi: 10.3934/mfc.2021023

[4]

Kaimin Teng, Xiumei He. Ground state solutions for fractional Schrödinger equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2016, 15 (3) : 991-1008. doi: 10.3934/cpaa.2016.15.991

[5]

Xianhua Tang, Sitong Chen. Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete & Continuous Dynamical Systems, 2017, 37 (9) : 4973-5002. doi: 10.3934/dcds.2017214

[6]

Sitong Chen, Xianhua Tang. Existence of ground state solutions for the planar axially symmetric Schrödinger-Poisson system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4685-4702. doi: 10.3934/dcdsb.2018329

[7]

Sitong Chen, Junping Shi, Xianhua Tang. Ground state solutions of Nehari-Pohozaev type for the planar Schrödinger-Poisson system with general nonlinearity. Discrete & Continuous Dynamical Systems, 2019, 39 (10) : 5867-5889. doi: 10.3934/dcds.2019257

[8]

Sitong Chen, Wennian Huang, Xianhua Tang. Existence criteria of ground state solutions for Schrödinger-Poisson systems with a vanishing potential. Discrete & Continuous Dynamical Systems - S, 2021, 14 (9) : 3055-3066. doi: 10.3934/dcdss.2020339

[9]

Yi He, Lu Lu, Wei Shuai. Concentrating ground-state solutions for a class of Schödinger-Poisson equations in $\mathbb{R}^3$ involving critical Sobolev exponents. Communications on Pure & Applied Analysis, 2016, 15 (1) : 103-125. doi: 10.3934/cpaa.2016.15.103

[10]

Xu Zhang, Shiwang Ma, Qilin Xie. Bound state solutions of Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 605-625. doi: 10.3934/dcds.2017025

[11]

Mengyao Chen, Qi Li, Shuangjie Peng. Bound states for fractional Schrödinger-Poisson system with critical exponent. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1819-1835. doi: 10.3934/dcdss.2021038

[12]

Yong-Yong Li, Yan-Fang Xue, Chun-Lei Tang. Ground state solutions for asymptotically periodic modified Schr$ \ddot{\mbox{o}} $dinger-Poisson system involving critical exponent. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2299-2324. doi: 10.3934/cpaa.2019104

[13]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[14]

Yu Su. Ground state solution of critical Schrödinger equation with singular potential. Communications on Pure & Applied Analysis, 2021, 20 (10) : 3347-3371. doi: 10.3934/cpaa.2021108

[15]

Antonio Azzollini, Pietro d’Avenia, Valeria Luisi. Generalized Schrödinger-Poisson type systems. Communications on Pure & Applied Analysis, 2013, 12 (2) : 867-879. doi: 10.3934/cpaa.2013.12.867

[16]

Xia Sun, Kaimin Teng. Positive bound states for fractional Schrödinger-Poisson system with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3735-3768. doi: 10.3934/cpaa.2020165

[17]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[18]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[19]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[20]

Marius Ghergu, Gurpreet Singh. On a class of mixed Choquard-Schrödinger-Poisson systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 297-309. doi: 10.3934/dcdss.2019021

2020 Impact Factor: 2.425

Metrics

  • PDF downloads (135)
  • HTML views (51)
  • Cited by (0)

Other articles
by authors

[Back to Top]