We consider the slightly subcritical elliptic problem with Hardy term
$ \left\{ \begin{aligned} - \Delta u-\mu\frac{u}{|x|^2} & = |u|^{2^{\ast}-2- \varepsilon}u &&\quad \rm{in } \Omega\subset{\mathbb{R}}^N, \\\ u & = 0&&\quad \rm{on } \partial \Omega, \end{aligned} \right. $
where $ 0\in \Omega $ and $ \Omega $ is invariant under the subgroup $ SO(2)\times\{\pm E_{N-2}\}\subset O(N) $; here $ E_n $ denots the $ n\times n $ identity matrix. If $ \mu = \mu_0 \varepsilon^ \alpha $ with $ \mu_0>0 $ fixed and $ \alpha>\frac{N-4}{N-2} $ the existence of nodal solutions that blow up, as $ \varepsilon\to0^+ $, positively at the origin and negatively at a different point in a general bounded domain has been proved in [
Citation: |
[1] |
T. Aubin, Problémes isopérimétriques et espaces de Sobolev', J. Differential Geometry, 11 (1976), 573-598.
![]() ![]() |
[2] |
A. Bahri, Y. Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Part. Diff. Equ., 3 (1995), 67-93.
doi: 10.1007/BF01190892.![]() ![]() ![]() |
[3] |
T. Bartsch, T. D'Aprile and A. Pistoia, Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1027-1047.
doi: 10.1016/j.anihpc.2013.01.001.![]() ![]() ![]() |
[4] |
T. Bartsch, T. D'Aprile and A. Pistoia, On the profile of sign-changing solutions of an almost critical problem in the ball, Bull. London Math. Soc., 45 (2013), 1246-1258.
doi: 10.1112/blms/bdt061.![]() ![]() ![]() |
[5] |
T. Bartsch and Q. Guo, Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term, Adv. Nonlinear Stud., 17 (2017), 55-85.
doi: 10.1515/ans-2016-6008.![]() ![]() ![]() |
[6] |
T. Bartsch and Q. Guo, Nodal bubble tower solutions to slightly subcritical elliptic problems with Hardy terms, SN Partial Differ. Equ. Appl., 1 (2020), 26.
![]() |
[7] |
T. Bartsch, A. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Part. Diff. Equ., 26 (2006), 265-282.
doi: 10.1007/s00526-006-0004-6.![]() ![]() ![]() |
[8] |
G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Functional Analysis, 100 (1991), 18-24.
doi: 10.1016/0022-1236(91)90099-Q.![]() ![]() ![]() |
[9] |
H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, Partial differential equations and the calculus of variations, Progr. Nonlinear Diff. Equ. Appl. Birkhäuser, Boston, MA, 1 (1989), 149-192.
![]() ![]() |
[10] |
D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 205 (2004), 521-537.
doi: 10.1016/j.jde.2004.03.005.![]() ![]() ![]() |
[11] |
D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Diff. Equ., 193 (2003), 424-434.
doi: 10.1016/S0022-0396(03)00118-9.![]() ![]() ![]() |
[12] |
D. Cao and S. J. Peng, Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth, Ann. Mat. Pura. Appl., 185 (2006), 189-205.
doi: 10.1007/s10231-005-0150-z.![]() ![]() ![]() |
[13] |
F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.
![]() ![]() |
[14] |
M. del Pino, J. Dolbeault and M. Musso, ``Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Diff. Equ., 193 (2003), 28-306.
doi: 10.1016/S0022-0396(03)00151-7.![]() ![]() ![]() |
[15] |
I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 207-265.
doi: 10.1090/S0273-0979-02-00929-1.![]() ![]() ![]() |
[16] |
V. Felli and A. Pistoia, Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth, Comm. Part. Diff. Equ., 31 (2006), 21-56.
doi: 10.1080/03605300500358145.![]() ![]() ![]() |
[17] |
V. Felli and S. Terracini, Fountain-like solutions for nonlinear elliptic equations with critical growth and Hardy potential, Comm. Contemp. Math., 7 (2005), 867-904.
doi: 10.1142/S0219199705001994.![]() ![]() ![]() |
[18] |
A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Diff. Equ., 177 (2001), 494-522.
doi: 10.1006/jdeq.2000.3999.![]() ![]() ![]() |
[19] |
M. Flucher and J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math., 94 (1997), 337-346.
doi: 10.1007/BF02677858.![]() ![]() ![]() |
[20] |
N. Ghoussoub and F. Robert, The Hardy-Schrödinger operator with interior singularity: The remaining cases,, Calc. Var. Part. Diff. Equ., 56 (20017), paper 149, 54 pp.
doi: 10.1007/s00526-017-1238-1.![]() ![]() ![]() |
[21] |
N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.
doi: 10.1090/S0002-9947-00-02560-5.![]() ![]() ![]() |
[22] |
M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Functional Analysis, 259 (2010), 904-917.
doi: 10.1016/j.jfa.2010.03.008.![]() ![]() ![]() |
[23] |
Q. Q. Guo and P. C. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains, J. Diff. Equ., 245 (2008), 3974-3985.
doi: 10.1016/j.jde.2008.08.002.![]() ![]() ![]() |
[24] |
Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159-174.
doi: 10.1016/S0294-1449(16)30270-0.![]() ![]() ![]() |
[25] |
E. Jannelli, The role played by space dimension in elliptic critical problems, J. Diff. Equ., 156 (1999), 407-426.
doi: 10.1006/jdeq.1998.3589.![]() ![]() ![]() |
[26] |
M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.
doi: 10.1016/j.matpur.2009.08.001.![]() ![]() ![]() |
[27] |
M. Musso and J. Wei, Nonradial solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg type, Int. Math. Res. Not., 2012 (2012), 4120-4162.
doi: 10.1093/imrn/rnr179.![]() ![]() ![]() |
[28] |
A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.
doi: 10.1016/j.anihpc.2006.03.002.![]() ![]() ![]() |
[29] |
O. Rey, Proof of two conjectures of H. Brézis and L.A. Peletier, Manuscripta Math., 65 (1989), 19-37.
doi: 10.1007/BF01168364.![]() ![]() ![]() |
[30] |
O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Functional Analysis, 89 (1990), 1-52.
doi: 10.1016/0022-1236(90)90002-3.![]() ![]() ![]() |
[31] |
O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations, 4 (1991), 1155-1167.
![]() ![]() |
[32] |
D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Diff. Equ., 190 (2003), 524-538.
doi: 10.1016/S0022-0396(02)00178-X.![]() ![]() ![]() |
[33] |
D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357 (2005), 2909-2938.
doi: 10.1090/S0002-9947-04-03769-9.![]() ![]() ![]() |
[34] |
G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.
doi: 10.1007/BF02418013.![]() ![]() ![]() |
[35] |
S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Equations, 1 (1996), 241-264.
![]() ![]() |