\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Multi-bubble nodal solutions to slightly subcritical elliptic problems with Hardy terms in symmetric domains

  • * Corresponding author: Qianqiao Guo

    * Corresponding author: Qianqiao Guo
Abstract Full Text(HTML) Related Papers Cited by
  • We consider the slightly subcritical elliptic problem with Hardy term

    $ \left\{ \begin{aligned} - \Delta u-\mu\frac{u}{|x|^2} & = |u|^{2^{\ast}-2- \varepsilon}u &&\quad \rm{in } \Omega\subset{\mathbb{R}}^N, \\\ u & = 0&&\quad \rm{on } \partial \Omega, \end{aligned} \right. $

    where $ 0\in \Omega $ and $ \Omega $ is invariant under the subgroup $ SO(2)\times\{\pm E_{N-2}\}\subset O(N) $; here $ E_n $ denots the $ n\times n $ identity matrix. If $ \mu = \mu_0 \varepsilon^ \alpha $ with $ \mu_0>0 $ fixed and $ \alpha>\frac{N-4}{N-2} $ the existence of nodal solutions that blow up, as $ \varepsilon\to0^+ $, positively at the origin and negatively at a different point in a general bounded domain has been proved in [5]. Solutions with more than two blow-up points have not been found so far. In the present paper we obtain the existence of nodal solutions with a positive blow-up point at the origin and $ k = 2 $ or $ k = 3 $ negative blow-up points placed symmetrically in $ \Omega\cap({\mathbb{R}}^2\times\{0\}) $ around the origin provided a certain function $ f_k:{\mathbb{R}}^+\times{\mathbb{R}}^+\times I\to{\mathbb{R}} $ has stable critical points; here $ I = \{t>0:(t,0,\dots,0)\in \Omega\} $. If $ \Omega = B(0,1)\subset{\mathbb{R}}^N $ is the unit ball centered at the origin we obtain two solutions for $ k = 2 $ and $ N\ge7 $, or $ k = 3 $ and $ N $ large. The result is optimal in the sense that for $ \Omega = B(0,1) $ there cannot exist solutions with a positive blow-up point at the origin and four negative blow-up points placed on the vertices of a square centered at the origin. Surprisingly there do exist solutions on $ \Omega = B(0,1) $ with a positive blow-up point at the origin and four blow-up points on the vertices of a square with alternating positive and negative signs. The results of our paper show that the structure of the set of blow-up solutions of the above problem offers fascinating features and is not well understood.

    Mathematics Subject Classification: 35B44, 35B33, 35J60.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] T. Aubin, Problémes isopérimétriques et espaces de Sobolev', J. Differential Geometry, 11 (1976), 573-598. 
    [2] A. BahriY. Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Part. Diff. Equ., 3 (1995), 67-93.  doi: 10.1007/BF01190892.
    [3] T. BartschT. D'Aprile and A. Pistoia, Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1027-1047.  doi: 10.1016/j.anihpc.2013.01.001.
    [4] T. BartschT. D'Aprile and A. Pistoia, On the profile of sign-changing solutions of an almost critical problem in the ball, Bull. London Math. Soc., 45 (2013), 1246-1258.  doi: 10.1112/blms/bdt061.
    [5] T. Bartsch and Q. Guo, Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term, Adv. Nonlinear Stud., 17 (2017), 55-85.  doi: 10.1515/ans-2016-6008.
    [6] T. Bartsch and Q. Guo, Nodal bubble tower solutions to slightly subcritical elliptic problems with Hardy terms, SN Partial Differ. Equ. Appl., 1 (2020), 26.
    [7] T. BartschA. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Part. Diff. Equ., 26 (2006), 265-282.  doi: 10.1007/s00526-006-0004-6.
    [8] G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Functional Analysis, 100 (1991), 18-24.  doi: 10.1016/0022-1236(91)90099-Q.
    [9] H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, Partial differential equations and the calculus of variations, Progr. Nonlinear Diff. Equ. Appl. Birkhäuser, Boston, MA, 1 (1989), 149-192. 
    [10] D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 205 (2004), 521-537.  doi: 10.1016/j.jde.2004.03.005.
    [11] D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Diff. Equ., 193 (2003), 424-434.  doi: 10.1016/S0022-0396(03)00118-9.
    [12] D. Cao and S. J. Peng, Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth, Ann. Mat. Pura. Appl., 185 (2006), 189-205.  doi: 10.1007/s10231-005-0150-z.
    [13] F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258. 
    [14] M. del PinoJ. Dolbeault and M. Musso, ``Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Diff. Equ., 193 (2003), 28-306.  doi: 10.1016/S0022-0396(03)00151-7.
    [15] I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 207-265.  doi: 10.1090/S0273-0979-02-00929-1.
    [16] V. Felli and A. Pistoia, Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth, Comm. Part. Diff. Equ., 31 (2006), 21-56.  doi: 10.1080/03605300500358145.
    [17] V. Felli and S. Terracini, Fountain-like solutions for nonlinear elliptic equations with critical growth and Hardy potential, Comm. Contemp. Math., 7 (2005), 867-904.  doi: 10.1142/S0219199705001994.
    [18] A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Diff. Equ., 177 (2001), 494-522.  doi: 10.1006/jdeq.2000.3999.
    [19] M. Flucher and J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math., 94 (1997), 337-346.  doi: 10.1007/BF02677858.
    [20] N. Ghoussoub and F. Robert, The Hardy-Schrödinger operator with interior singularity: The remaining cases,, Calc. Var. Part. Diff. Equ., 56 (20017), paper 149, 54 pp. doi: 10.1007/s00526-017-1238-1.
    [21] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.
    [22] M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Functional Analysis, 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.
    [23] Q. Q. Guo and P. C. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains, J. Diff. Equ., 245 (2008), 3974-3985.  doi: 10.1016/j.jde.2008.08.002.
    [24] Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159-174.  doi: 10.1016/S0294-1449(16)30270-0.
    [25] E. Jannelli, The role played by space dimension in elliptic critical problems, J. Diff. Equ., 156 (1999), 407-426.  doi: 10.1006/jdeq.1998.3589.
    [26] M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.  doi: 10.1016/j.matpur.2009.08.001.
    [27] M. Musso and J. Wei, Nonradial solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg type, Int. Math. Res. Not., 2012 (2012), 4120-4162.  doi: 10.1093/imrn/rnr179.
    [28] A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.  doi: 10.1016/j.anihpc.2006.03.002.
    [29] O. Rey, Proof of two conjectures of H. Brézis and L.A. Peletier, Manuscripta Math., 65 (1989), 19-37.  doi: 10.1007/BF01168364.
    [30] O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Functional Analysis, 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.
    [31] O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations, 4 (1991), 1155-1167. 
    [32] D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Diff. Equ., 190 (2003), 524-538.  doi: 10.1016/S0022-0396(02)00178-X.
    [33] D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357 (2005), 2909-2938.  doi: 10.1090/S0002-9947-04-03769-9.
    [34] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.
    [35] S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Equations, 1 (1996), 241-264. 
  • 加载中
SHARE

Article Metrics

HTML views(452) PDF downloads(194) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return