June  2021, 14(6): 1801-1818. doi: 10.3934/dcdss.2021065

Multi-bubble nodal solutions to slightly subcritical elliptic problems with Hardy terms in symmetric domains

1. 

Mathematisches Institut, Justus-Liebig-Universit$ \ddot{a} $t Giessen, Arndtstr. 2, 35392 Giessen, Germany

2. 

School of Mathematics and Statistics, Northwestern Polytechnical University, 710129 Xi'an, China

* Corresponding author: Qianqiao Guo

Received  December 2020 Revised  April 2021 Published  May 2021

We consider the slightly subcritical elliptic problem with Hardy term
$ \left\{ \begin{aligned} - \Delta u-\mu\frac{u}{|x|^2} & = |u|^{2^{\ast}-2- \varepsilon}u &&\quad \rm{in } \Omega\subset{\mathbb{R}}^N, \\\ u & = 0&&\quad \rm{on } \partial \Omega, \end{aligned} \right. $
where
$ 0\in \Omega $
and
$ \Omega $
is invariant under the subgroup
$ SO(2)\times\{\pm E_{N-2}\}\subset O(N) $
; here
$ E_n $
denots the
$ n\times n $
identity matrix. If
$ \mu = \mu_0 \varepsilon^ \alpha $
with
$ \mu_0>0 $
fixed and
$ \alpha>\frac{N-4}{N-2} $
the existence of nodal solutions that blow up, as
$ \varepsilon\to0^+ $
, positively at the origin and negatively at a different point in a general bounded domain has been proved in [5]. Solutions with more than two blow-up points have not been found so far. In the present paper we obtain the existence of nodal solutions with a positive blow-up point at the origin and
$ k = 2 $
or
$ k = 3 $
negative blow-up points placed symmetrically in
$ \Omega\cap({\mathbb{R}}^2\times\{0\}) $
around the origin provided a certain function
$ f_k:{\mathbb{R}}^+\times{\mathbb{R}}^+\times I\to{\mathbb{R}} $
has stable critical points; here
$ I = \{t>0:(t,0,\dots,0)\in \Omega\} $
. If
$ \Omega = B(0,1)\subset{\mathbb{R}}^N $
is the unit ball centered at the origin we obtain two solutions for
$ k = 2 $
and
$ N\ge7 $
, or
$ k = 3 $
and
$ N $
large. The result is optimal in the sense that for
$ \Omega = B(0,1) $
there cannot exist solutions with a positive blow-up point at the origin and four negative blow-up points placed on the vertices of a square centered at the origin. Surprisingly there do exist solutions on
$ \Omega = B(0,1) $
with a positive blow-up point at the origin and four blow-up points on the vertices of a square with alternating positive and negative signs. The results of our paper show that the structure of the set of blow-up solutions of the above problem offers fascinating features and is not well understood.
Citation: Thomas Bartsch, Qianqiao Guo. Multi-bubble nodal solutions to slightly subcritical elliptic problems with Hardy terms in symmetric domains. Discrete & Continuous Dynamical Systems - S, 2021, 14 (6) : 1801-1818. doi: 10.3934/dcdss.2021065
References:
[1]

T. Aubin, Problémes isopérimétriques et espaces de Sobolev', J. Differential Geometry, 11 (1976), 573-598.   Google Scholar

[2]

A. BahriY. Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Part. Diff. Equ., 3 (1995), 67-93.  doi: 10.1007/BF01190892.  Google Scholar

[3]

T. BartschT. D'Aprile and A. Pistoia, Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1027-1047.  doi: 10.1016/j.anihpc.2013.01.001.  Google Scholar

[4]

T. BartschT. D'Aprile and A. Pistoia, On the profile of sign-changing solutions of an almost critical problem in the ball, Bull. London Math. Soc., 45 (2013), 1246-1258.  doi: 10.1112/blms/bdt061.  Google Scholar

[5]

T. Bartsch and Q. Guo, Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term, Adv. Nonlinear Stud., 17 (2017), 55-85.  doi: 10.1515/ans-2016-6008.  Google Scholar

[6]

T. Bartsch and Q. Guo, Nodal bubble tower solutions to slightly subcritical elliptic problems with Hardy terms, SN Partial Differ. Equ. Appl., 1 (2020), 26. Google Scholar

[7]

T. BartschA. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Part. Diff. Equ., 26 (2006), 265-282.  doi: 10.1007/s00526-006-0004-6.  Google Scholar

[8]

G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Functional Analysis, 100 (1991), 18-24.  doi: 10.1016/0022-1236(91)90099-Q.  Google Scholar

[9]

H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, Partial differential equations and the calculus of variations, Progr. Nonlinear Diff. Equ. Appl. Birkhäuser, Boston, MA, 1 (1989), 149-192.   Google Scholar

[10]

D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 205 (2004), 521-537.  doi: 10.1016/j.jde.2004.03.005.  Google Scholar

[11]

D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Diff. Equ., 193 (2003), 424-434.  doi: 10.1016/S0022-0396(03)00118-9.  Google Scholar

[12]

D. Cao and S. J. Peng, Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth, Ann. Mat. Pura. Appl., 185 (2006), 189-205.  doi: 10.1007/s10231-005-0150-z.  Google Scholar

[13]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.   Google Scholar

[14]

M. del PinoJ. Dolbeault and M. Musso, ``Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Diff. Equ., 193 (2003), 28-306.  doi: 10.1016/S0022-0396(03)00151-7.  Google Scholar

[15]

I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 207-265.  doi: 10.1090/S0273-0979-02-00929-1.  Google Scholar

[16]

V. Felli and A. Pistoia, Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth, Comm. Part. Diff. Equ., 31 (2006), 21-56.  doi: 10.1080/03605300500358145.  Google Scholar

[17]

V. Felli and S. Terracini, Fountain-like solutions for nonlinear elliptic equations with critical growth and Hardy potential, Comm. Contemp. Math., 7 (2005), 867-904.  doi: 10.1142/S0219199705001994.  Google Scholar

[18]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Diff. Equ., 177 (2001), 494-522.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[19]

M. Flucher and J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math., 94 (1997), 337-346.  doi: 10.1007/BF02677858.  Google Scholar

[20]

N. Ghoussoub and F. Robert, The Hardy-Schrödinger operator with interior singularity: The remaining cases,, Calc. Var. Part. Diff. Equ., 56 (20017), paper 149, 54 pp. doi: 10.1007/s00526-017-1238-1.  Google Scholar

[21]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.  Google Scholar

[22]

M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Functional Analysis, 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.  Google Scholar

[23]

Q. Q. Guo and P. C. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains, J. Diff. Equ., 245 (2008), 3974-3985.  doi: 10.1016/j.jde.2008.08.002.  Google Scholar

[24]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159-174.  doi: 10.1016/S0294-1449(16)30270-0.  Google Scholar

[25]

E. Jannelli, The role played by space dimension in elliptic critical problems, J. Diff. Equ., 156 (1999), 407-426.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[26]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[27]

M. Musso and J. Wei, Nonradial solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg type, Int. Math. Res. Not., 2012 (2012), 4120-4162.  doi: 10.1093/imrn/rnr179.  Google Scholar

[28]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[29]

O. Rey, Proof of two conjectures of H. Brézis and L.A. Peletier, Manuscripta Math., 65 (1989), 19-37.  doi: 10.1007/BF01168364.  Google Scholar

[30]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Functional Analysis, 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[31]

O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations, 4 (1991), 1155-1167.   Google Scholar

[32]

D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Diff. Equ., 190 (2003), 524-538.  doi: 10.1016/S0022-0396(02)00178-X.  Google Scholar

[33]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357 (2005), 2909-2938.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[34]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Equations, 1 (1996), 241-264.   Google Scholar

show all references

References:
[1]

T. Aubin, Problémes isopérimétriques et espaces de Sobolev', J. Differential Geometry, 11 (1976), 573-598.   Google Scholar

[2]

A. BahriY. Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity, Calc. Var. Part. Diff. Equ., 3 (1995), 67-93.  doi: 10.1007/BF01190892.  Google Scholar

[3]

T. BartschT. D'Aprile and A. Pistoia, Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1027-1047.  doi: 10.1016/j.anihpc.2013.01.001.  Google Scholar

[4]

T. BartschT. D'Aprile and A. Pistoia, On the profile of sign-changing solutions of an almost critical problem in the ball, Bull. London Math. Soc., 45 (2013), 1246-1258.  doi: 10.1112/blms/bdt061.  Google Scholar

[5]

T. Bartsch and Q. Guo, Nodal blow-up solutions to slightly subcritical elliptic problems with Hardy-critical term, Adv. Nonlinear Stud., 17 (2017), 55-85.  doi: 10.1515/ans-2016-6008.  Google Scholar

[6]

T. Bartsch and Q. Guo, Nodal bubble tower solutions to slightly subcritical elliptic problems with Hardy terms, SN Partial Differ. Equ. Appl., 1 (2020), 26. Google Scholar

[7]

T. BartschA. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth, Calc. Var. Part. Diff. Equ., 26 (2006), 265-282.  doi: 10.1007/s00526-006-0004-6.  Google Scholar

[8]

G. Bianchi and H. Egnell, A note on the Sobolev inequality, J. Functional Analysis, 100 (1991), 18-24.  doi: 10.1016/0022-1236(91)90099-Q.  Google Scholar

[9]

H. Brezis and L. A. Peletier, Asymptotics for elliptic equations involving critical growth, Partial differential equations and the calculus of variations, Progr. Nonlinear Diff. Equ. Appl. Birkhäuser, Boston, MA, 1 (1989), 149-192.   Google Scholar

[10]

D. Cao and P. Han, Solutions for semilinear elliptic equations with critical exponents and Hardy potential, J. Diff. Equ., 205 (2004), 521-537.  doi: 10.1016/j.jde.2004.03.005.  Google Scholar

[11]

D. Cao and S. Peng, A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms, J. Diff. Equ., 193 (2003), 424-434.  doi: 10.1016/S0022-0396(03)00118-9.  Google Scholar

[12]

D. Cao and S. J. Peng, Asymptotic behavior for elliptic problems with singular coefficient and nearly critical Sobolev growth, Ann. Mat. Pura. Appl., 185 (2006), 189-205.  doi: 10.1007/s10231-005-0150-z.  Google Scholar

[13]

F. Catrina and Z.-Q. Wang, On the Caffarelli-Kohn-Nirenberg inequalities: Sharp constants, existence (and nonexistence), and symmetry of extremal functions, Comm. Pure Appl. Math., 54 (2001), 229-258.   Google Scholar

[14]

M. del PinoJ. Dolbeault and M. Musso, ``Bubble-tower" radial solutions in the slightly supercritical Brezis-Nirenberg problem, J. Diff. Equ., 193 (2003), 28-306.  doi: 10.1016/S0022-0396(03)00151-7.  Google Scholar

[15]

I. Ekeland and N. Ghoussoub, Selected new aspects of the calculus of variations in the large, Bull. Amer. Math. Soc. (N.S.), 39 (2002), 207-265.  doi: 10.1090/S0273-0979-02-00929-1.  Google Scholar

[16]

V. Felli and A. Pistoia, Existence of blowing-up solutions for a nonlinear elliptic equation with Hardy potential and critical growth, Comm. Part. Diff. Equ., 31 (2006), 21-56.  doi: 10.1080/03605300500358145.  Google Scholar

[17]

V. Felli and S. Terracini, Fountain-like solutions for nonlinear elliptic equations with critical growth and Hardy potential, Comm. Contemp. Math., 7 (2005), 867-904.  doi: 10.1142/S0219199705001994.  Google Scholar

[18]

A. Ferrero and F. Gazzola, Existence of solutions for singular critical growth semilinear elliptic equations, J. Diff. Equ., 177 (2001), 494-522.  doi: 10.1006/jdeq.2000.3999.  Google Scholar

[19]

M. Flucher and J. Wei, Semilinear Dirichlet problem with nearly critical exponent, asymptotic location of hot spots, Manuscripta Math., 94 (1997), 337-346.  doi: 10.1007/BF02677858.  Google Scholar

[20]

N. Ghoussoub and F. Robert, The Hardy-Schrödinger operator with interior singularity: The remaining cases,, Calc. Var. Part. Diff. Equ., 56 (20017), paper 149, 54 pp. doi: 10.1007/s00526-017-1238-1.  Google Scholar

[21]

N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc., 352 (2000), 5703-5743.  doi: 10.1090/S0002-9947-00-02560-5.  Google Scholar

[22]

M. Grossi and F. Takahashi, Nonexistence of multi-bubble solutions to some elliptic equations on convex domains, J. Functional Analysis, 259 (2010), 904-917.  doi: 10.1016/j.jfa.2010.03.008.  Google Scholar

[23]

Q. Q. Guo and P. C. Niu, Nodal and positive solutions for singular semilinear elliptic equations with critical exponents in symmetric domains, J. Diff. Equ., 245 (2008), 3974-3985.  doi: 10.1016/j.jde.2008.08.002.  Google Scholar

[24]

Z. C. Han, Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent, Ann. Inst. H. Poincaré Anal. Non Linéaire, 8 (1991), 159-174.  doi: 10.1016/S0294-1449(16)30270-0.  Google Scholar

[25]

E. Jannelli, The role played by space dimension in elliptic critical problems, J. Diff. Equ., 156 (1999), 407-426.  doi: 10.1006/jdeq.1998.3589.  Google Scholar

[26]

M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains, J. Math. Pures Appl., 93 (2010), 1-40.  doi: 10.1016/j.matpur.2009.08.001.  Google Scholar

[27]

M. Musso and J. Wei, Nonradial solutions to critical elliptic equations of Caffarelli-Kohn-Nirenberg type, Int. Math. Res. Not., 2012 (2012), 4120-4162.  doi: 10.1093/imrn/rnr179.  Google Scholar

[28]

A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325-340.  doi: 10.1016/j.anihpc.2006.03.002.  Google Scholar

[29]

O. Rey, Proof of two conjectures of H. Brézis and L.A. Peletier, Manuscripta Math., 65 (1989), 19-37.  doi: 10.1007/BF01168364.  Google Scholar

[30]

O. Rey, The role of the Green's function in a nonlinear elliptic equation involving the critical Sobolev exponent, J. Functional Analysis, 89 (1990), 1-52.  doi: 10.1016/0022-1236(90)90002-3.  Google Scholar

[31]

O. Rey, Blow-up points of solutions to elliptic equations with limiting nonlinearity, Differential Integral Equations, 4 (1991), 1155-1167.   Google Scholar

[32]

D. Ruiz and M. Willem, Elliptic problems with critical exponents and Hardy potentials, J. Diff. Equ., 190 (2003), 524-538.  doi: 10.1016/S0022-0396(02)00178-X.  Google Scholar

[33]

D. Smets, Nonlinear Schrödinger equations with Hardy potential and critical nonlinearities, Trans. Amer. Math. Soc., 357 (2005), 2909-2938.  doi: 10.1090/S0002-9947-04-03769-9.  Google Scholar

[34]

G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl., 110 (1976), 353-372.  doi: 10.1007/BF02418013.  Google Scholar

[35]

S. Terracini, On positive entire solutions to a class of equations with a singular coefficient and critical exponent, Adv. Diff. Equations, 1 (1996), 241-264.   Google Scholar

[1]

Andrés Contreras, Manuel del Pino. Nodal bubble-tower solutions to radial elliptic problems near criticality. Discrete & Continuous Dynamical Systems, 2006, 16 (3) : 525-539. doi: 10.3934/dcds.2006.16.525

[2]

Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete & Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211

[3]

Lingju Kong, Qingkai Kong. Existence of nodal solutions of multi-point boundary value problems. Conference Publications, 2009, 2009 (Special) : 457-465. doi: 10.3934/proc.2009.2009.457

[4]

Elvise Berchio, Filippo Gazzola, Dario Pierotti. Nodal solutions to critical growth elliptic problems under Steklov boundary conditions. Communications on Pure & Applied Analysis, 2009, 8 (2) : 533-557. doi: 10.3934/cpaa.2009.8.533

[5]

Zhongyuan Liu. Nodal Bubble-Tower Solutions for a semilinear elliptic problem with competing powers. Discrete & Continuous Dynamical Systems, 2017, 37 (10) : 5299-5317. doi: 10.3934/dcds.2017230

[6]

Gustavo S. Costa, Giovany M. Figueiredo. Existence and concentration of nodal solutions for a subcritical p&q equation. Communications on Pure & Applied Analysis, 2020, 19 (11) : 5077-5095. doi: 10.3934/cpaa.2020227

[7]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[8]

Genni Fragnelli, Dimitri Mugnai, Nikolaos S. Papageorgiou. Positive and nodal solutions for parametric nonlinear Robin problems with indefinite potential. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6133-6166. doi: 10.3934/dcds.2016068

[9]

Jing Zhang, Shiwang Ma. Positive solutions of perturbed elliptic problems involving Hardy potential and critical Sobolev exponent. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1999-2009. doi: 10.3934/dcdsb.2016033

[10]

Yuxin Ge, Ruihua Jing, Feng Zhou. Bubble tower solutions of slightly supercritical elliptic equations and application in symmetric domains. Discrete & Continuous Dynamical Systems, 2007, 17 (4) : 751-770. doi: 10.3934/dcds.2007.17.751

[11]

Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure & Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527

[12]

Monica Lazzo, Paul G. Schmidt. Nodal properties of radial solutions for a class of polyharmonic equations. Conference Publications, 2007, 2007 (Special) : 634-643. doi: 10.3934/proc.2007.2007.634

[13]

Nikolaos S. Papageorgiou, Vicenţiu D. Rǎdulescu, Dušan D. Repovš. Nodal solutions for the Robin p-Laplacian plus an indefinite potential and a general reaction term. Communications on Pure & Applied Analysis, 2018, 17 (1) : 231-241. doi: 10.3934/cpaa.2018014

[14]

Maoding Zhen, Jinchun He, Haoyuan Xu, Meihua Yang. Positive ground state solutions for fractional Laplacian system with one critical exponent and one subcritical exponent. Discrete & Continuous Dynamical Systems, 2019, 39 (11) : 6523-6539. doi: 10.3934/dcds.2019283

[15]

Yinbin Deng, Yi Li, Xiujuan Yan. Nodal solutions for a quasilinear Schrödinger equation with critical nonlinearity and non-square diffusion. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2487-2508. doi: 10.3934/cpaa.2015.14.2487

[16]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity. Communications on Pure & Applied Analysis, 2021, 20 (2) : 817-834. doi: 10.3934/cpaa.2020292

[17]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[18]

Chungen Liu, Huabo Zhang. Ground state and nodal solutions for fractional Kirchhoff equation with pure critical growth nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2021038

[19]

Juan Carlos Fernández, Oscar Palmas, Jimmy Petean. Supercritical elliptic problems on the round sphere and nodal solutions to the Yamabe problem in projective spaces. Discrete & Continuous Dynamical Systems, 2020, 40 (4) : 2495-2514. doi: 10.3934/dcds.2020123

[20]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

2019 Impact Factor: 1.233

Article outline

[Back to Top]