We are concerned with the polynomial stability and the integrability of the energy for second order integro-differential equations in Hilbert spaces with positive definite kernels, where the memory can be oscillating or sign-varying or not locally absolutely continuous (without any control conditions on the derivative of the kernel). For this stability problem, tools from the theory of existing positive definite kernels can not be applied. In order to solve the problem, we introduce and study a new mathematical concept – generalized positive definite kernel (GPDK). With the help of GPDK and its properties, we obtain an efficient criterion of the polynomial stability for evolution equations with such a general but more complicated and useful memory. Moreover, in contrast to existing positive definite kernels, GPDK allows us to directly express the decay rate of the related kernel.
Citation: |
[1] |
S. Acosta and B. Palacios, Thermoacoustic tomography for an integro-differential wave equation modeling attenuation, J. Differential Equations, 264 (2010), 1984-2010.
doi: 10.1016/j.jde.2017.10.012.![]() ![]() ![]() |
[2] |
F. Alabau-Boussouira, P. Cannarsa and D. Sforza, Decay estimates for second order evolution equations with memory, J. Funct. Anal., 254 (2008), 1342-1372.
doi: 10.1016/j.jfa.2007.09.012.![]() ![]() ![]() |
[3] |
P. Cannarsa and D. Sforza, Semilinear integrodifferential equations of hyperbolic type: Existence in the large, Mediterr. J. Math., 1 (2004), 151-174.
doi: 10.1007/s00009-004-0009-3.![]() ![]() ![]() |
[4] |
P. Cannarsa and D. Sforza, Integro-differential equations of hyperbolic type with positive definite kernels, J. Differential Equations, 250 (2011), 4289-4335.
doi: 10.1016/j.jde.2011.03.005.![]() ![]() ![]() |
[5] |
M. M. Cavalcanti, F. R. Dias Silva, V. N. Domingos Cavalcanti and A. Vicente, Stability for the mixed problem involving the wave equation, with localized damping, in unbounded domains with finite measure, SIAM J. Control Optim., 56 (2018), 2802-2834.
doi: 10.1137/16M1100514.![]() ![]() ![]() |
[6] |
M. M. Cavalcanti, V. N. Domingos Cavalcanti, M. A. Jorge Silva and A. Y. de Souza Franco, Exponential stability for the wave model with localized memory in a past history framework, J. Differential Equations, 264 (2018), 6535-6584.
doi: 10.1016/j.jde.2018.01.044.![]() ![]() ![]() |
[7] |
M. M. Cavalcanti, I. Lasiecka and D. Toundykov, Wave equation with damping affecting only a subset of static Wentzell boundary is uniformly stable, Trans. Amer. Math. Soc., 364 (2012), 5693-5713.
doi: 10.1090/S0002-9947-2012-05583-8.![]() ![]() ![]() |
[8] |
C. M. Dafermos and J. A. Nokel, Energy methods for nonlinear hyperbolic Volterra integrodifferential equations, Comm. Partial Differential Equations, 4 (1979), 219-278.
doi: 10.1080/03605307908820094.![]() ![]() ![]() |
[9] |
B. de Andrade and A. Viana, Abstract Volterra integrodifferential equations with applications to parabolic models with memory, Math. Ann., 369 (2017), 1131-1175.
doi: 10.1007/s00208-016-1469-z.![]() ![]() ![]() |
[10] |
V. Georgiev, B. Rubino and R. Sampalmieri, Global existence for elastic waves with memory, Arch. Ration. Mech. Anal., 176 (2005), 303-330.
doi: 10.1007/s00205-004-0345-2.![]() ![]() ![]() |
[11] |
G. Gripenberg, S. O. Londen and O. J. Staffans, Volterra Integral and Functional Equations,
Encyclopedia Math. Appl., vol. 34, Cambridge Univ. Press, Cambridge, 1990.
doi: 10.1017/CBO9780511662805.![]() ![]() ![]() |
[12] |
W. J. Hrusa, Global existence and asymptotic stability for a semilinear Volterra equation with large initial data, SIAM J. Math. Anal., 16 (1985), 110-134.
doi: 10.1137/0516007.![]() ![]() ![]() |
[13] |
K.-P. Jin, J. Liang and T.-J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differential Equations, 257 (2014), 1501-1528.
doi: 10.1016/j.jde.2014.05.018.![]() ![]() ![]() |
[14] |
K.-P. Jin, J. Liang and T.-J. Xiao, Uniform stability of semilinear wave equations with arbitrary local memory effects versus frictional dampings, J. Differential Equations, 266 (2019), 7230-7263.
doi: 10.1016/j.jde.2018.11.031.![]() ![]() ![]() |
[15] |
K.-P. Jin, J. Liang and T.-J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554-575.
doi: 10.1016/j.jmaa.2019.02.055.![]() ![]() ![]() |
[16] |
S. Kawashima, Global solutions to the equation of viscoelasticity with fading memory, J. Differential Equations, 101 (1993), 388-420.
doi: 10.1006/jdeq.1993.1017.![]() ![]() ![]() |
[17] |
I. Lasiecka, S. A. Messaoudi and M. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 031504.
doi: 10.1063/1.4793988.![]() ![]() ![]() |
[18] |
C. Li, J. Liang and T.-J. Xiao, Long-term dynamical behavior of the wave model with locally distributed frictional and viscoelastic damping, Commun. Nonlinear Sci. Numer. Simulat., 92 (2021), 105472, 22 pp.
doi: 10.1016/j.cnsns.2020.105472.![]() ![]() ![]() |
[19] |
S.-O. Londen and W. M. Ruess, Linearized stability for nonlinear Volterra equations, J. Evol. Equ., 17 (2017), 473-483.
doi: 10.1007/s00028-016-0381-z.![]() ![]() ![]() |
[20] |
P. Loreti and D. Sforza, A Semilinear Integro-Differential Equation: Global Existence and Hidden Regularity, in Trends in Control Theory and Partial Differential Equations (eds. F. Alabau-Boussouira, F. Ancona, A. Porretta and C. Sinestrari), Springer INdAM Series, vol 32. Springer, Cham., 2019.
![]() ![]() |
[21] |
R. C. Maccamy and J. S. W. Wong, Stability theorems for some functional equations, Trans. Amer. Math. Soc., 164 (1972), 1-37.
doi: 10.1090/S0002-9947-1972-0293355-X.![]() ![]() ![]() |
[22] |
J. E. Mu${\rm\tilde{n}}$oz Rivera and E. C. Lapa, Decay rates of solutions of an anisotropic inhomogeneous $n$-dimensional viscoelastic equation with polynomial decaying kernels, Comm. Math. Phys., 177 (1996), 583-602.
doi: 10.1007/BF02099539.![]() ![]() ![]() |
[23] |
J. E. Mu${\rm\tilde{n}}$oz Rivera and H. D. Fern${\rm\acute{a}}$ndez Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482-502.
doi: 10.1016/j.jmaa.2007.07.012.![]() ![]() ![]() |
[24] |
M. Nakao, $L^{p}$ estimates for the linear wave equation and global existence for semilinear wave equations in exterior domains, Math. Ann., 320 (2001), 11-31.
doi: 10.1007/PL00004463.![]() ![]() ![]() |
[25] |
S. Nicaise and C. Pignotti, Stability of the wave equation with localized Kelvin-Voigt damping and boundary delay feedback, Discrete Contin. Dyn. Syst. Ser. S, 9 (2016), 791-813.
doi: 10.3934/dcdss.2016029.![]() ![]() ![]() |
[26] |
S. Nicaise, C. Pignotti and J. Valein, Exponential stability of the wave equation with boundary time-varying delay, Discrete Contin. Dyn. Syst. Ser. S, 3 (2011), 693-722.
doi: 10.3934/dcdss.2011.4.693.![]() ![]() ![]() |
[27] |
S. Nicaise, J. Valein and E. Fridman, Stability of the heat and of the wave equations with boundary time-varying delays, Discrete Contin. Dyn. Syst. Ser. S, 2 (2009), 559-581.
doi: 10.3934/dcdss.2009.2.559.![]() ![]() ![]() |
[28] |
J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra equations, Adv. Math., 22 (1976), 278-304.
doi: 10.1016/0001-8708(76)90096-7.![]() ![]() ![]() |
[29] |
M. Okada and S. Kawashima, Global solutions to the equation of thermoelasticity with fading memory, J. Differential Equations, 263 (2017), 338-364.
doi: 10.1016/j.jde.2017.02.037.![]() ![]() ![]() |
[30] |
O. J. Staffans, On a nonlinear hyperbolic Volterra equation, SIAM J. Math. Anal., 11 (1980), 793-812.
doi: 10.1137/0511071.![]() ![]() ![]() |
[31] |
J. S. W. Wong, Positive definite functions and Volterra integral equations, Bull. Amer. Math. Soc., 80 (1974), 679-682.
doi: 10.1090/S0002-9904-1974-13546-9.![]() ![]() ![]() |
[32] |
T.-J. Xiao and J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differential Equations, 254 (2013), 2128-2157.
doi: 10.1016/j.jde.2012.11.019.![]() ![]() ![]() |
[33] |
H. Zhan and Z. Feng, Stability of hyperbolic-parabolic mixed type equations with partial boundary condition, J. Differential Equations, 264 (2018), 7384-7411.
doi: 10.1016/j.jde.2018.02.019.![]() ![]() ![]() |
[34] |
H. Zhan and Z. Feng, Stability of hyperbolic-parabolic mixed type equations, Dyn. Partial Differ. Equ., 16 (2019), 253-272.
doi: 10.4310/DPDE.2019.v16.n3.a2.![]() ![]() ![]() |