In this paper, we deal with a system of fractional Hartree equations. By means of a direct method of moving planes, the radial symmetry and monotonicity of positive solutions are presented.
Citation: |
[1] |
G. Alberti and G. Bellettini, A nonlocal anisotropicmodel for phase transitions I: The optimal profile problem, Math. Ann., 310 (1998), 527-560.
doi: 10.1007/s002080050159.![]() ![]() ![]() |
[2] |
C. Brandle, E. Colorado, A. de Pablo and U. Sanchez, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Royal Soc. Edinburgh Sect. A, 143 (2013), 39-71.
doi: 10.1017/S0308210511000175.![]() ![]() ![]() |
[3] |
C. Bucur and E. Valdinoci, Nonlocal Diffusion and Applications, volume 20 of Lecture Notes of the Unione Matematica Italiana. Springer, [Cham]; Unione Matematica Italiana, Bologna, 2016.
doi: 10.1007/978-3-319-28739-3.![]() ![]() ![]() |
[4] |
L. Caffarelli, J.-M. Roquejoffre and O. Savin, Nonlocal minimal surfaces, Comm. Pure Appl. Math., 63 (2010), 1111-1144.
doi: 10.1002/cpa.20331.![]() ![]() ![]() |
[5] |
L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian, Invent. Math., 171 (2008), 425-461.
doi: 10.1007/s00222-007-0086-6.![]() ![]() ![]() |
[6] |
L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. PDE., 32 (2007), 1245-1260.
doi: 10.1080/03605300600987306.![]() ![]() ![]() |
[7] |
L. Caffarelli and E. Valdinoci, Uniform estimates and limiting arguments for nonlocal minimal surfaces, Calc. Var. Partial Differential Equations, 41 (2011), 203-240.
doi: 10.1007/s00526-010-0359-6.![]() ![]() ![]() |
[8] |
W. Chen, Y. Fang and R. Yang, Liouville theorems involving the fractional Laplacian on a half space, Adv. Math., 274 (2015), 167-198.
doi: 10.1016/j.aim.2014.12.013.![]() ![]() ![]() |
[9] |
W. Chen, C. Li and Y. Li, A direct method of moving planes for the fractional Laplacian, Adv. Math., 308 (2017), 404-437.
doi: 10.1016/j.aim.2016.11.038.![]() ![]() ![]() |
[10] |
W. Chen, C. Li and B. Ou, Classiffication of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.
doi: 10.1002/cpa.20116.![]() ![]() ![]() |
[11] |
W. Chen and J. Zhu, Indefinite fractional elliptic problem and Liouville theorems, J. Differential Equations, 260 (2016), 4758-4785.
doi: 10.1016/j.jde.2015.11.029.![]() ![]() ![]() |
[12] |
R. Cont and P. Tankov, Financial Modelling with Jump Processes, Chapman & Hall CRC Financial Mathematics Series, Chapman & HallCRC, Boca Raton, FL, 2004.
![]() ![]() |
[13] |
W. Dai, Y. Fang, J. Huang, Y. Qin and B. Wang, Regularity and classification of solutions to static Hartree equations involving fractional Laplacians, Discrete and Continuous Dynamical Systems, 39 (2019), 1389-1403.
doi: 10.3934/dcds.2018117.![]() ![]() ![]() |
[14] |
W. Dai, Y. Fang and G. Qin, Classification of positive solutions to fractional order Hartree equations via a direct method of moving planes, J. Differential Equations, 265 (2018), 2044-2063.
doi: 10.1016/j.jde.2018.04.026.![]() ![]() ![]() |
[15] |
J. Fröhlich, B. L. G. Jonsson and E. Lenzmann, Boson stars as solitary waves, Commun. Math. Phys., 274 (2007), 1-30.
doi: 10.1007/s00220-007-0272-9.![]() ![]() ![]() |
[16] |
J. Giacomoni, T. Mukherjee and K. Sreenadh, Existence and stabilization results for a singular parabolic equation involving the fractional Laplacian, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 311-337.
doi: 10.3934/dcdss.2019022.![]() ![]() ![]() |
[17] |
D. Li, C. Miao and X. Zhang, The focusing energy-critical Hartree equation, J. Differential Equations, 246 (2009), 1139-1163.
doi: 10.1016/j.jde.2008.05.013.![]() ![]() ![]() |
[18] |
E. H. Lieb and B. Simon, The Hartree-Fock theory for Coulomb systems, Comm. Math. Phys., 53 (1977), 185-194.
doi: 10.1007/BF01609845.![]() ![]() ![]() |
[19] |
X. Liu, Symmetry of positive solutions for the fractional Hartree equation, Acta Math.Sci., 39 (2019), 1508-1516.
doi: 10.1007/s10473-019-0603-x.![]() ![]() ![]() |
[20] |
C. Miao, G. Xu and and L. Zhao, Global well-posedness, scattering and blow-up for the energy-critical, focusing Hartree equation in the radial case, Colloq. Math., 114 (2009), 213-236.
doi: 10.4064/cm114-2-5.![]() ![]() ![]() |
[21] |
S. Serfaty and J. L. V$\acute{a}$zquez, A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calc. Var. Partial Differential Equations, 49 (2014), 1091-1120.
doi: 10.1007/s00526-013-0613-9.![]() ![]() ![]() |
[22] |
J. Serrin, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43 (1971), 304-318.
doi: 10.1007/BF00250468.![]() ![]() ![]() |
[23] |
Z. Shen, Z. Han and Q. Zhang, Ground states of nonlinear Schrödinger equations with fractional Laplacians, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 2115-2125.
doi: 10.3934/dcdss.2019136.![]() ![]() ![]() |
[24] |
L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator, Comm. Pure Appl. Math., 60 (2007), 67-112.
doi: 10.1002/cpa.20153.![]() ![]() ![]() |
[25] |
J. Sun, T.-F. Wu and Z. Feng, Non-autonomous Schrödinger-Poisson system in $R^3$, Discrete Contin. Dyn. Syst., 38 (2018), 1889-1933.
doi: 10.3934/dcds.2018077.![]() ![]() ![]() |
[26] |
E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. Se MA, 49 (2009), 33-44.
![]() ![]() |
[27] |
J. L. Vázquez, Nonlinear diffusion with fractional Laplacian operators, in "Nonlinear Partial Differential Equations", Springer, Heidelberg, 2012, 271–298.
doi: 10.1007/978-3-642-25361-4_15.![]() ![]() ![]() |