We consider a class of initial fractional Liouville-Caputo difference equations (IFLCDEs) and its corresponding initial uncertain fractional Liouville-Caputo difference equations (IUFLCDEs). Next, we make comparisons between two unique solutions of the IFLCDEs by deriving an important theorem, namely the main theorem. Besides, we make comparisons between IUFLCDEs and their $ \varrho $-paths by deriving another important theorem, namely the link theorem, which is obtained by the help of the main theorem. We consider a special case of the IUFLCDEs and its solution involving the discrete Mittag-Leffler. Also, we present the solution of its $ \varrho $-paths via the solution of the special linear IUFLCDE. Furthermore, we derive the uniqueness of IUFLCDEs. Finally, we present some test examples of IUFLCDEs by using the uniqueness theorem and the link theorem to find a relation between the solutions for the IUFLCDEs of symmetrical uncertain variables and their $ \varrho $-paths.
Citation: |
[1] |
F. Atici and P. Eloe, A transform method in discrete fractional calculus, Internat. J. Differ. Equ., 2 (2007), 165-176.
![]() ![]() |
[2] |
Ö. Akgandüller and S. Paşali Atmaca, Discrete normal vector field approximation via time scale calculus, Appl. Math. Nonlinear Sci., 5 (2020), 349-360.
doi: 10.2478/amns.2020.1.00033.![]() ![]() ![]() |
[3] |
T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Differ. Equ., 2016 (2016).
doi: 10.1186/s13662-016-0949-5.![]() ![]() ![]() |
[4] |
T. Abdeljawad, Fractional difference operators with discrete generalized Mittag-Leffler kernels, Chaos Soliton Fract., 126 (2019), 315-324.
doi: 10.1016/j.chaos.2019.06.012.![]() ![]() ![]() |
[5] |
T. Abdeljawad and D. Baleanu, Monotonicity results for fractional difference operators with discrete exponential kernels, Adv. Differ. Equ., 2017 (2017).
doi: 10.1186/s13662-017-1126-1.![]() ![]() ![]() |
[6] |
T. Abdeljawad, F. Jarad, A. Atangana and P. O. Mohammed, On a new type of fractional difference operators on h-step isolated time scales, J. Fract. Calc. & Nonlinear Sys., 1 (2021), 46-74.
![]() |
[7] |
B. Ahmad, M. Alghanmi, A. Alsaedi, H. M. Srivastava and S. K. Ntouyas, The Langevin equation in terms of generalized Liouville-Caputo derivatives with nonlocal boundary conditions involving a generalized fractional integral, Mathematics, 7 (2019), 1-10.
![]() |
[8] |
T. Abdeljawad, On delta and nabla caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013).
doi: 10.1155/2013/406910.![]() ![]() ![]() |
[9] |
T. Abdeljawad, Dual identities in fractional difference calculus within Riemann, Adv. Differ. Equ., 2013 (2013).
doi: 10.1186/1687-1847-2013-36.![]() ![]() ![]() |
[10] |
T. Abdeljawad, Different type kernel $h$–fractional differences and their fractional $h$–sums, Chaos Solit. Fract., 116 (2018), 146-56.
doi: 10.1016/j.chaos.2018.09.022.![]() ![]() ![]() |
[11] |
M. Bohner and A. C. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, 2003.
![]() |
[12] |
M. Bohner and S. G. Georgiev, Multivariable Dynamic Calculus on Time Scales, Springer, Cham, 2016.
doi: 10.1007/978-3-319-47620-9.![]() ![]() ![]() |
[13] |
L. L. Huang, G. C. Wu, D. Baleanu and H. Y. Wang, Discrete fractional calculus for interval-valued systems, Fuzzy Sets Syst., 404 (2020), 141-158.
doi: 10.1016/j.fss.2020.04.008.![]() ![]() ![]() |
[14] |
C. Goodrich and A. C. Peterson, Discrete Fractional Calculus, Springer, Berlin, 2015.
doi: 10.1007/978-3-319-25562-0.![]() ![]() ![]() |
[15] |
B. Liu, Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty, Springer, Berlin, Germany, 2010.
![]() |
[16] |
L.-L. Huang, D. Baleanu, Z.-W. Mo and G.-C. Wu, Fractional discrete-time diffusion equation with uncertainty: Applications of fuzzy discrete fractional calculus, Physica A Stat. Mech. Appl., 508 (2018), 166-175.
doi: 10.1016/j.physa.2018.03.092.![]() ![]() ![]() |
[17] |
A. Khan, H. M. Alshehri, T. Abdeljawad and Q. M. Al-Mdallal, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021), 103888.
![]() |
[18] |
A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Science B.V., Amsterdam, 2006.
![]() ![]() |
[19] |
C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809-3827.
doi: 10.1090/proc/12895.![]() ![]() ![]() |
[20] |
Z.-Y. Liu, T.-C. Xia and J.-B. Wang, Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem, Chin. Phys. B, 27 (2018), 030502.
![]() |
[21] |
Q. Lu and Y. Zhu, Comparison theorems and distributions of solutions to uncertain fractional difference equations, J. Comput. Appl., 376 (2020), 112884.
doi: 10.1016/j.cam.2020.112884.![]() ![]() ![]() |
[22] |
Q. Lu, Y. Zhu and Z. Lu, Uncertain fractional forward difference equations for Riemann-Liouville type, Adv. Differ. Equ., 2019 (2019).
doi: 10.1186/s13662-019-2093-5.![]() ![]() ![]() |
[23] |
P. O. Mohammed, A generalized uncertain fractional forward difference equations of Riemann-Liouville type, J. Math. Res., 11 (2019), 43-50.
![]() |
[24] |
P. O. Mohammed, F. K. Hamasalh and T. Abdeljawad, Difference monotonicity analysis on discrete fractional operators with discrete generalized Mittag-Leffler kernels, Adv. Differ. Equ., 2021 (2021).
doi: 10.1186/s13662-021-03372-2.![]() ![]() ![]() |
[25] |
P. O. Mohammed, T. Abdeljawad, F. Jarad and Y.-M. Chu, Existence and uniqueness of uncertain fractional backward difference equations of Riemann-Liouville type, Math. Probl. Eng., 2020 (2020), 1-8.
doi: 10.1155/2020/6598682.![]() ![]() ![]() |
[26] |
P. O. Mohammed and T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., (2020), 1–26.
doi: 10.1002/mma.7083.![]() ![]() |
[27] |
J. Shi, M. Han and N. Zhang, Uncertainty principles for discrete signals associated with the fractional Fourier and linear canonical transforms, SIViP, 10 (2016), 1519-1525.
![]() |
[28] |
H. M. Srivastava, Fractional-order derivatives and integrals: Introductory overview and recent developments, Kyungpook Math. J., 60 (2020), 73-116.
doi: 10.5666/KMJ.2020.60.1.73.![]() ![]() ![]() |
[29] |
H. M. Srivastava and P. O. Mohammed, A correlation between solutions of uncertain fractional forward difference equations and their paths, Front. Phys., 8 (2020).
![]() |
[30] |
H. M. Srivastava, P. O. Mohammed, C. Ryoo and Y. S. Hamed, Existence and uniqueness of a class of uncertain Liouville-Caputo fractional difference equations, J. King Saud Univ. Sci., 33 (2021), 101497.
doi: 10.1016/j.jksus.2021.101497.![]() ![]() |
[31] |
Z. Wang, B. Shiri and D. Baleanu, Discrete fractional watermark technique, Front. Inform. Technol. Electron. Eng., 21 (2020), 880-883.
![]() |
[32] |
G. Wu, D. Baleanu and Y. Bai, Discrete fractional masks and their applications to image enhancement, De Gruyter, Berlin, 8 (2019), 261-270.
![]() ![]() |
[33] |
B. Zhang and P. Shang, Uncertainty of financial time series based on discrete fractional cumulative residual entropy, Chaos, 29 (2019).
doi: 10.1063/1.5091545.![]() ![]() ![]() |