• Previous Article
    Shape optimization method for an inverse geometric source problem and stability at critical shape
  • DCDS-S Home
  • This Issue
  • Next Article
    Optimal control problem of variable-order delay system of advertising procedure: Numerical treatment
doi: 10.3934/dcdss.2021092
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation

1. 

Department of Mathematics, Higher Institute of computer scince and multimedia of Sfax, University of Sfax, Sfax, Tunisia

2. 

Department of Mathematics, College of Sciences, Qassim University, Buraidah, Saudi Arabia

* Corresponding author: abdallah.benabdallah@ipeis.rnu.tn

Received  March 2021 Revised  June 2021 Early access August 2021

In this paper, we solve the problem of rapid exponential stabilization for coupled nonlinear ordinary differential equation (ODE) and $ 1-d $ unstable linear heat diffusion. The control acts at a boundary of the heat domain and the heat equation enters in the ODE by Dirichlet connection. We show that the infinite dimensional backstepping transformation introduced recently for stabilization of coupled linear ODE-PDE can deal with a nonlinear ODE and obtain a global stabilization result. Our result is innovative and no similar result can be found in the literature as it combines the three following factors, i) nonlinear term in the ODE subsystem, ii) unstable PDE subsystem and iii) mixed boundary condition. Not only this, the techniques used in this work can provide answers to fundamental questions, such as the stabilization of coupled systems where both subsystems may contain nonlinear terms.

Citation: Abdallah Benabdallah, Mohsen Dlala. Rapid exponential stabilization by boundary state feedback for a class of coupled nonlinear ODE and $ 1-d $ heat diffusion equation. Discrete & Continuous Dynamical Systems - S, doi: 10.3934/dcdss.2021092
References:
[1]

T. Ahmed-AliF. GiriM. Krstic and F. Lamnabhi-Lagarrigue, Observer design for a class of nonlinear ODE-PDE cascade systems, Systems & Control Letters, 83 (2015), 19-27.  doi: 10.1016/j.sysconle.2015.06.003.  Google Scholar

[2]

N. Bekiaris-Liberis and M. Krstic, Compensation of wave actuator dynamics for nonlinear systems, IEEE Transaction on Automatic Control, 59 (2014), 1555-1570.  doi: 10.1109/TAC.2014.2309057.  Google Scholar

[3]

A. Benabdallah, Stabilization of a class of nonlinear uncertain ordinary differential equation by parabolic partial differential equation controller, International Journal of Robust and Nonlinear Control, 30 (2020), 3023-3038.  doi: 10.1002/rnc.4901.  Google Scholar

[4]

X. Cai and M. Krstic, Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary, Automatica, 68 (2016), 27-38.  doi: 10.1016/j.automatica.2016.01.043.  Google Scholar

[5]

X. CaiL. LiaoJ. Zhang and W. Zhang, Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics, Kybernetika, 52 (2016), 76-88.  doi: 10.14736/kyb-2016-1-0076.  Google Scholar

[6]

C. ChalonsM.-L. Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, Interfaces and Free Boundaries, 19 (2017), 553-570.  doi: 10.4171/IFB/392.  Google Scholar

[7]

J. DaafouzM. Tucsnak and J. Valein, Nonlinear control of a coupled PDE-ODE system modeling a switched power converter with a transmission line, Systems & Control Letters, 70 (2014), 92-99.  doi: 10.1016/j.sysconle.2014.05.009.  Google Scholar

[8]

M. DiagneN. Bekiaris-LiberisA. Otto and M. Krstic, Control of transport pde/nonlinear ODE cascades with state-dependent propagation speed, IEEE Trans. Automat. Control, 62 (2017), 6278-6293.  doi: 10.1109/TAC.2017.2702103.  Google Scholar

[9]

A. HasanaO. M. Aamoa and M. Krstic, Boundary observer design for hyperbolic PDE-ODE cascade systems, Automatica, 68 (2016), 75-86.  doi: 10.1016/j.automatica.2016.01.058.  Google Scholar

[10]

F. Hassine, Rapid exponential stabilization of a 1-d transmission wave equation with in-domain anti-damping, Asian Journal of Control, 19 (2017), 2017-2027.  doi: 10.1002/asjc.1509.  Google Scholar

[11]

M. Krstic, Compensating a string pde in the actuation or sensing path of an unstable ODE, IEEE Transaction on Automatic Control, 54 (2009), 1362-1368.  doi: 10.1109/TAC.2009.2015557.  Google Scholar

[12]

M. Krstic, Compensating actuator and sensor dynamics governed by diffusion PDES, Systems & Control Letters, 58 (2009), 372-377.  doi: 10.1016/j.sysconle.2009.01.006.  Google Scholar

[13]

H. Lei and W. Lin, Universal adaptive control of nonlinear systems with unknown growth rate by output feedback, Automatica, 42 (2006), 1783-1789.  doi: 10.1016/j.automatica.2006.05.006.  Google Scholar

[14]

X. Liu and C. Xie, Control law in analytic expression of a system coupled by reaction-diffusion equation, Systems & Control Letters, 137 (2020), 104643, 5 pp. doi: 10.1016/j.sysconle.2020.104643.  Google Scholar

[15]

F. MazencL. Praly and W. P. Dayawansa, Global stabilization by output feedback : Examples and counter-examples, Systems & Control Letters, 23 (1994), 119-125.  doi: 10.1016/0167-6911(94)90041-8.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

B. SaldivarS. Mondié and J. C. Avila Vilchis, The control of drilling vibrations: A coupled PDE-ODE modeling approach, International Journal Applied Mathematics Computer Science, 26 (2016), 335-349.  doi: 10.1515/amcs-2016-0024.  Google Scholar

[18]

A. Smyshlyaev and M. Krstic, Closed-form boundary state feedbacks for a class of $1-d$ partial integro-differential equations, IEEE Transaction on Automatic Control, 49 (2004), 2185-2202.  doi: 10.1109/TAC.2004.838495.  Google Scholar

[19]

G. A. Susto and M. Krstic, Control of PDE-ODE cascades with neumann interconnections, Journal of Franklin Institute, 347 (2010), 284-314.  doi: 10.1016/j.jfranklin.2009.09.005.  Google Scholar

[20]

S. Tang and C. Xie, Stabilization for a coupled PDE-ODE control system, Journal of the Franklin Institute, 348 (2011), 2142-2155.  doi: 10.1016/j.jfranklin.2011.06.008.  Google Scholar

[21]

S. Tang and C. Xie, State and output feedback boundary control for a coupled PDE-ODE system, Systems & Control Letters, 60 (2011), 540-545.  doi: 10.1016/j.sysconle.2011.04.011.  Google Scholar

[22]

Y. Tang and G. Mazanti, Stability analysis of coupled linear ODE-hyperbolic PDE systems with two time scales, Automatica, 85 (2017), 386-396.  doi: 10.1016/j.automatica.2017.07.052.  Google Scholar

[23]

G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems, SIAM Journal on Control and Optimization, 48 (2009), 2719-2750.  doi: 10.1137/090752833.  Google Scholar

[24]

H.-N. Wu and J.-W. Wang, Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion pde-governed sensor dynamics, Nonlinear Dynamics, 72 (2013), 615-628.  doi: 10.1007/s11071-012-0740-4.  Google Scholar

[25]

A. Zhao and C. Xie, Stabilization of coupled linear plant and reaction-diffusion process, Journal of the Franklin Institute, 351 (2014), 857-877.  doi: 10.1016/j.jfranklin.2013.09.012.  Google Scholar

[26]

X. Zhao and G. Weiss, Controllability and observability of a well-posed system coupled with a finite-dimensional system, IEEE Transactions on Automatic Control, 56 (2011), 88-99.  doi: 10.1109/TAC.2010.2051352.  Google Scholar

[27]

Z. Zhoua and S. Tang, Boundary stabilization of a coupled wave-ode system with internal anti-damping, International Journal of Control, 85 (2012), 1683-1693.  doi: 10.1080/00207179.2012.696704.  Google Scholar

show all references

References:
[1]

T. Ahmed-AliF. GiriM. Krstic and F. Lamnabhi-Lagarrigue, Observer design for a class of nonlinear ODE-PDE cascade systems, Systems & Control Letters, 83 (2015), 19-27.  doi: 10.1016/j.sysconle.2015.06.003.  Google Scholar

[2]

N. Bekiaris-Liberis and M. Krstic, Compensation of wave actuator dynamics for nonlinear systems, IEEE Transaction on Automatic Control, 59 (2014), 1555-1570.  doi: 10.1109/TAC.2014.2309057.  Google Scholar

[3]

A. Benabdallah, Stabilization of a class of nonlinear uncertain ordinary differential equation by parabolic partial differential equation controller, International Journal of Robust and Nonlinear Control, 30 (2020), 3023-3038.  doi: 10.1002/rnc.4901.  Google Scholar

[4]

X. Cai and M. Krstic, Nonlinear stabilization through wave PDE dynamics with a moving uncontrolled boundary, Automatica, 68 (2016), 27-38.  doi: 10.1016/j.automatica.2016.01.043.  Google Scholar

[5]

X. CaiL. LiaoJ. Zhang and W. Zhang, Observer design for a class of nonlinear system in cascade with counter-convecting transport dynamics, Kybernetika, 52 (2016), 76-88.  doi: 10.14736/kyb-2016-1-0076.  Google Scholar

[6]

C. ChalonsM.-L. Delle Monache and P. Goatin, A conservative scheme for non-classical solutions to a strongly coupled PDE-ODE problem, Interfaces and Free Boundaries, 19 (2017), 553-570.  doi: 10.4171/IFB/392.  Google Scholar

[7]

J. DaafouzM. Tucsnak and J. Valein, Nonlinear control of a coupled PDE-ODE system modeling a switched power converter with a transmission line, Systems & Control Letters, 70 (2014), 92-99.  doi: 10.1016/j.sysconle.2014.05.009.  Google Scholar

[8]

M. DiagneN. Bekiaris-LiberisA. Otto and M. Krstic, Control of transport pde/nonlinear ODE cascades with state-dependent propagation speed, IEEE Trans. Automat. Control, 62 (2017), 6278-6293.  doi: 10.1109/TAC.2017.2702103.  Google Scholar

[9]

A. HasanaO. M. Aamoa and M. Krstic, Boundary observer design for hyperbolic PDE-ODE cascade systems, Automatica, 68 (2016), 75-86.  doi: 10.1016/j.automatica.2016.01.058.  Google Scholar

[10]

F. Hassine, Rapid exponential stabilization of a 1-d transmission wave equation with in-domain anti-damping, Asian Journal of Control, 19 (2017), 2017-2027.  doi: 10.1002/asjc.1509.  Google Scholar

[11]

M. Krstic, Compensating a string pde in the actuation or sensing path of an unstable ODE, IEEE Transaction on Automatic Control, 54 (2009), 1362-1368.  doi: 10.1109/TAC.2009.2015557.  Google Scholar

[12]

M. Krstic, Compensating actuator and sensor dynamics governed by diffusion PDES, Systems & Control Letters, 58 (2009), 372-377.  doi: 10.1016/j.sysconle.2009.01.006.  Google Scholar

[13]

H. Lei and W. Lin, Universal adaptive control of nonlinear systems with unknown growth rate by output feedback, Automatica, 42 (2006), 1783-1789.  doi: 10.1016/j.automatica.2006.05.006.  Google Scholar

[14]

X. Liu and C. Xie, Control law in analytic expression of a system coupled by reaction-diffusion equation, Systems & Control Letters, 137 (2020), 104643, 5 pp. doi: 10.1016/j.sysconle.2020.104643.  Google Scholar

[15]

F. MazencL. Praly and W. P. Dayawansa, Global stabilization by output feedback : Examples and counter-examples, Systems & Control Letters, 23 (1994), 119-125.  doi: 10.1016/0167-6911(94)90041-8.  Google Scholar

[16]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[17]

B. SaldivarS. Mondié and J. C. Avila Vilchis, The control of drilling vibrations: A coupled PDE-ODE modeling approach, International Journal Applied Mathematics Computer Science, 26 (2016), 335-349.  doi: 10.1515/amcs-2016-0024.  Google Scholar

[18]

A. Smyshlyaev and M. Krstic, Closed-form boundary state feedbacks for a class of $1-d$ partial integro-differential equations, IEEE Transaction on Automatic Control, 49 (2004), 2185-2202.  doi: 10.1109/TAC.2004.838495.  Google Scholar

[19]

G. A. Susto and M. Krstic, Control of PDE-ODE cascades with neumann interconnections, Journal of Franklin Institute, 347 (2010), 284-314.  doi: 10.1016/j.jfranklin.2009.09.005.  Google Scholar

[20]

S. Tang and C. Xie, Stabilization for a coupled PDE-ODE control system, Journal of the Franklin Institute, 348 (2011), 2142-2155.  doi: 10.1016/j.jfranklin.2011.06.008.  Google Scholar

[21]

S. Tang and C. Xie, State and output feedback boundary control for a coupled PDE-ODE system, Systems & Control Letters, 60 (2011), 540-545.  doi: 10.1016/j.sysconle.2011.04.011.  Google Scholar

[22]

Y. Tang and G. Mazanti, Stability analysis of coupled linear ODE-hyperbolic PDE systems with two time scales, Automatica, 85 (2017), 386-396.  doi: 10.1016/j.automatica.2017.07.052.  Google Scholar

[23]

G. Weiss and X. Zhao, Well-posedness and controllability of a class of coupled linear systems, SIAM Journal on Control and Optimization, 48 (2009), 2719-2750.  doi: 10.1137/090752833.  Google Scholar

[24]

H.-N. Wu and J.-W. Wang, Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion pde-governed sensor dynamics, Nonlinear Dynamics, 72 (2013), 615-628.  doi: 10.1007/s11071-012-0740-4.  Google Scholar

[25]

A. Zhao and C. Xie, Stabilization of coupled linear plant and reaction-diffusion process, Journal of the Franklin Institute, 351 (2014), 857-877.  doi: 10.1016/j.jfranklin.2013.09.012.  Google Scholar

[26]

X. Zhao and G. Weiss, Controllability and observability of a well-posed system coupled with a finite-dimensional system, IEEE Transactions on Automatic Control, 56 (2011), 88-99.  doi: 10.1109/TAC.2010.2051352.  Google Scholar

[27]

Z. Zhoua and S. Tang, Boundary stabilization of a coupled wave-ode system with internal anti-damping, International Journal of Control, 85 (2012), 1683-1693.  doi: 10.1080/00207179.2012.696704.  Google Scholar

[1]

Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515

[2]

Vanessa Baumgärtner, Simone Göttlich, Stephan Knapp. Feedback stabilization for a coupled PDE-ODE production system. Mathematical Control & Related Fields, 2020, 10 (2) : 405-424. doi: 10.3934/mcrf.2020003

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Maria Laura Delle Monache, Paola Goatin. A front tracking method for a strongly coupled PDE-ODE system with moving density constraints in traffic flow. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 435-447. doi: 10.3934/dcdss.2014.7.435

[5]

Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031

[6]

George Avalos, Roberto Triggiani. Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete & Continuous Dynamical Systems, 2008, 22 (4) : 817-833. doi: 10.3934/dcds.2008.22.817

[7]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021, 11 (3) : 601-624. doi: 10.3934/mcrf.2021014

[8]

Roberto Triggiani. The coupled PDE system of a composite (sandwich) beam revisited. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 285-298. doi: 10.3934/dcdsb.2003.3.285

[9]

Sebastian Aniţa, Vincenzo Capasso. Stabilization of a reaction-diffusion system modelling malaria transmission. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1673-1684. doi: 10.3934/dcdsb.2012.17.1673

[10]

Wanli Yang, Jie Sun, Su Zhang. Analysis of optimal boundary control for a three-dimensional reaction-diffusion system. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 325-344. doi: 10.3934/naco.2017021

[11]

Xin Li, Xingfu Zou. On a reaction-diffusion model for sterile insect release method with release on the boundary. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2509-2522. doi: 10.3934/dcdsb.2012.17.2509

[12]

Gilbert Peralta, Karl Kunisch. Interface stabilization of a parabolic-hyperbolic pde system with delay in the interaction. Discrete & Continuous Dynamical Systems, 2018, 38 (6) : 3055-3083. doi: 10.3934/dcds.2018133

[13]

Haomin Huang, Mingxin Wang. The reaction-diffusion system for an SIR epidemic model with a free boundary. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2039-2050. doi: 10.3934/dcdsb.2015.20.2039

[14]

Ciro D'Apice, Peter I. Kogut, Rosanna Manzo. On relaxation of state constrained optimal control problem for a PDE-ODE model of supply chains. Networks & Heterogeneous Media, 2014, 9 (3) : 501-518. doi: 10.3934/nhm.2014.9.501

[15]

Sebastian Aniţa, William Edward Fitzgibbon, Michel Langlais. Global existence and internal stabilization for a reaction-diffusion system posed on non coincident spatial domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 805-822. doi: 10.3934/dcdsb.2009.11.805

[16]

Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure & Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229

[17]

Jean-Michel Coron. Phantom tracking method, homogeneity and rapid stabilization. Mathematical Control & Related Fields, 2013, 3 (3) : 303-322. doi: 10.3934/mcrf.2013.3.303

[18]

Wilhelm Stannat, Lukas Wessels. Deterministic control of stochastic reaction-diffusion equations. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020087

[19]

Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Networks & Heterogeneous Media, 2013, 8 (1) : 23-35. doi: 10.3934/nhm.2013.8.23

[20]

Adam Bobrowski, Katarzyna Morawska. From a PDE model to an ODE model of dynamics of synaptic depression. Discrete & Continuous Dynamical Systems - B, 2012, 17 (7) : 2313-2327. doi: 10.3934/dcdsb.2012.17.2313

2020 Impact Factor: 2.425

Article outline

[Back to Top]